【题目】已知直线l的参数方程为
,(t为参数),以坐标原点为极点,x正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=
.
(1)写出直线l的极坐标方程与曲线C的直角坐标方程.
(2)若点P是曲线C上的动点,求点P到直线l的距离的最小值,并求出此时点P的坐标.
参考答案:
【答案】
(1)解:
,消去参数可得x﹣y=1
直线l的极坐标方程为 ![]()
由ρ=
.得ρcos2θ=sinθρ2cos2θ=ρsinθ
得y=x2(x≠0)
(2)解:设P(x0,y0),则
点P到直线l的距离为 ![]()
当 ![]()
当
P到直线l的距离最小,最小 ![]()
【解析】(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程;(2)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中点.

(1)求证:AM∥平面PCD;
(2)设点N是线段CD上的一动点,当点N在何处时,直线MN与平面PAB所成的角最大?并求出最大角的正弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了让学生更多的了解“数学史”知识,梁才学校高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号
分组
组中值
频数
频率
(i)
(分数)
(Gi)
(人数)
(Fi)
1

65
①
0.12
2

75
20
②
3

85
③
0.24
4

95
④
⑤
合计
50
1
(1)填充频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在
参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=(x+a)lnx,g(x)=
,已知曲线y=f(x)在x=1处的切线过点(2,3).
(1)求实数a的值.
(2)是否存在自然数k,使得函数y=f(x)﹣g(x)在(k,k+1)内存在唯一的零点?如果存在,求出k;如果不存在,请说明理由.
(3)设函数h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的较小值),对于实数m,x0∈(0,+∞),使得h(x0)≥m成立,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:
x
1
2
3
4
5
6
7
y
6
11
21
34
66
101
196
根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内,
与
(
,
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);(2)若y关于x的回归方程不是线性的可通过换元方法把它化归为线性回归方程。例如:
(a、b为常数,e为自然对数的底数),可以两边同时取自然对数
,再令
,先用最小二乘法求出
与x的线性回归方程,再得出y与x的回归方程。根据(1)的判断结果及表1中的数据,求y关于x的回归方程;(3)由(2)中的归方程预测活动推出第12天使用扫码支付的人次。
参考数据:





66
1.54
2711
50.12
3.47
其中
,参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
。 -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=|x﹣a|,a<0.
(1)证明f(x)+f(﹣
)≥2;
(2)若不等式f(x)+f(2x)<
的解集非空,求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )

A.
B.
C.
D.
相关试题