【题目】某地区高考实行新方案,规定:语文、数学和英语是学生的必考科目,学生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生确定选考方案,否则称该学生待确定选考方案.例如学生甲选择“物理、化学和生物”三个选考科目,则称学生甲确定选考方案.某校为了解高一年级450名学生选考科目的意向,随机选取30名学生进行了一次调查,统计情况如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 有6人确定选考方案 | 0 | 1 | 2 | 6 | 6 | 3 |
有8人待确定选考方案 | 5 | 3 | 1 | 1 | 0 | 0 | |
女生 | 有10人确定选考方案 | 3 | 2 | 1 | 8 | 10 | 6 |
有6人待确定选考方案 | 5 | 4 | 1 | 0 | 0 | 1 |
(1)估计该校高一年级已确定选考方案的学生有多少人?
(2)写出确定选考方案的6名男生中选择“历史、地理和生物”的人数.(直接写出结果)
(3)从确定选考方案的6名男生中任选2名,试求出这2名学生选考科目完全相同的概率.
【答案】(1)240人;(2)人;(3)
.
【解析】
(1)用30人中已确定选考的比例作为总体的比例可得整修年级已确定选考方案的学生人数;
(2)男生中选择“历史、地理和生物”的人数最小的为2人,而化学、生物、政治相加人数也为6与地理、历史人数相等,故可得;
(3)把这6人编号,用列举法写出所有选法计数后可得概率.
(1)由题可知,已确定选考方案的男生有人,已确定选考方案的女生有
人,
可估计该校高一年级已确定选考方案的学生共有
人.
(2)人.
(3)由表格可知,已确定选考方案的男生共有6人,其中3人选择“历史、地理和政治”,记为:,1人选择“历史、地理和化学”,记为:
,2人选择“历史、地理和生物”,记为:
,.
从已确定选考科目的男生中任选2人,有,
,
共有15种选法.
2名学生选考科目完全相同的选法有共有4种选法.
设事件A:从确定选考方案的男生中任选出2人,这2名学生选考科目完全相同.
则P(A)=.
科目:高中数学 来源: 题型:
【题目】如图1,在等腰梯形中,
,
,
,
为
的中点.现分别沿
,
将
和
折起,点
折至点
,点
折至点
,使得平面
平面
,平面
平面
,连接
,如图2.
(Ⅰ)若平面内的动点
满足
平面
,作出点
的轨迹并证明;
(Ⅱ)求平面与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒中有6个小球,3个白球,记为个红球, 记为
个黑球, 记为
,除了颜色和编号外,球没有任何区别.
(1) 求从盒中取一球是红球的概率;
(2)从盒中取一球,记下颜色后放回,再取一球,记下颜色,若取白球得1分,取红球得2分,取黑球得3分,求两次取球得分之和为5分的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线
:
(
为参数),在以平面直角坐标系的原点为极点、
轴的正半轴为极轴,且与平面直角坐标系
取相同单位长度的极坐标系中,曲线
:
.
(1)求曲线的普通方程以及曲线
的平面直角坐标方程;
(2)若曲线上恰好存在三个不同的点到曲线
的距离相等,求这三个点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有
把握认为“对冰壶运动是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 20 | ||
女 | 15 | ||
合计 | 100 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com