【题目】在棱长为1的正方体ABCD—A1B1C1D1中,
M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距离.
![]()
参考答案:
【答案】(Ⅰ)见解析;(Ⅱ)
.
【解析】试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找往往结合平几知识,如本题利用三角形中位线性质可得MN∥AC,(Ⅱ)求点到平面的距离,一般利用等体积法,转化为求对应面上的高,本题利用
,将求B1到平面A1BC1的距离转化为求两个三角形面积比值关系.
试题解析:(Ⅰ)证明:连结B1C、AC,则N也是B1C的中点
∴MN是△B1AC的中位线,即有MN∥AC
∵MN
平面ABCD,AC
平面ABCD
∴MN∥平面ABCD
(Ⅱ)A1BC1是边长为
的等边三角形,∴![]()
![]()
![]()
设B1到平面A1BC1的距离为h,由
得
∴![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
(
)的右焦点为
,且椭圆
上一点
到其两焦点
,
的距离之和为
.(1)求椭圆
的标准方程;(2)设直线
:
(
)与椭圆
交于不同两点
,
,且
,若点
满足
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列
的前
项和为
,且
.(1)求数列
的通项公式,并写出推理过程;(2)令
,
,试比较
与
的大小,并给出你的证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。
(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;
(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率;

-
科目: 来源: 题型:
查看答案和解析>>【题目】简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片。当初向各地作了广告推广,同时广告对销售收益也有影响。在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;
(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,并将各地销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)
1
2
3
4
5
销售收益y(单位:百万元)
2
3
2
7
表中的数据显示,
与
之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算
关于
的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】同时抛掷甲、乙两颗骰子.
(1)求事件A“甲的点数大于乙的点数”的概率;
(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆
内”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某城市有一块半径为40 m的半圆形绿化区域(以O 为圆心,AB为直径),现计划对其进行改建.在AB的延长线上取点D,OD=80 m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2.设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.
相关试题