精英家教网 > 高中数学 > 题目详情

【题目】某工厂新购置甲、乙两种设备,分别生产AB两种产品,为了解这两种产品的质量,随机抽取了200件进行质量检测,得到质量指标值的频数统计表如下:

质量指标值

合计

A产品频数

2

6

a

32

20

10

80

B产品频数

12

24

b

27

15

6

n

产品质量2×2列联表

产品质量高

产品质量一般

合计

A产品

B产品

合计

附:

1)求abn的值,并估计A产品质量指标值的平均数;

2)若质量指标值大于50,则说明该产品质量高,否则说明该产品质量一般.请根据频数表完成列联表,并判断是否有的把握认为质量高低与引入甲、乙设备有关.

【答案】153.25;(2)有.

【解析】

1)由题意结合频数分布表直接计算即可得,再由平均数公式即可求得平均数;

2)由题意列出列联表,代入公式计算出,与比较即可得解.

1)由题意得

∴可估计A产品质量指标值的平均数

2)列联表如下:

产品质量高

产品质量一般

合计

A产品

62

18

80

B产品

48

72

120

合计

110

90

200

.

所以有的把握认为产品质量高低与引入甲乙设备有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆和圆为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,.

(Ⅰ)求的方程;

(Ⅱ)直线轴交于点,且与椭圆和圆都相切,切点分别为,记的积分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,常数.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

1)写出及直线的直角坐标方程,并指出是什么曲线;

2)设是曲线上的一个动点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,平面FG分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极值;

2)若对于任意实数,当时,函数的最大值为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:

月销售单价(元/件)

月销售量(万件)

1)若用线性回归模型拟合之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;

2)若用模型拟合之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为,请用说明哪个回归模型的拟合效果更好;

3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为.为线段上一点,,有下列条件:

;②;③.

请从以上三个条件中任选两个,求的大小和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为菱形, ,H为上的点,过的平面分别交于点,且平面

(1)证明:

(2)当的中点, 与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案
鍏� 闂�