【题目】某工厂新购置甲、乙两种设备,分别生产A,B两种产品,为了解这两种产品的质量,随机抽取了200件进行质量检测,得到质量指标值的频数统计表如下:
质量指标值 | 合计 | ||||||
A产品频数 | 2 | 6 | a | 32 | 20 | 10 | 80 |
B产品频数 | 12 | 24 | b | 27 | 15 | 6 | n |
产品质量2×2列联表
产品质量高 | 产品质量一般 | 合计 | |
A产品 | |||
B产品 | |||
合计 |
附:
(1)求a,b,n的值,并估计A产品质量指标值的平均数;
(2)若质量指标值大于50,则说明该产品质量高,否则说明该产品质量一般.请根据频数表完成列联表,并判断是否有
的把握认为质量高低与引入甲、乙设备有关.
科目:高中数学 来源: 题型:
【题目】已知椭圆:
和圆
:
,
,
为椭圆
的左、右焦点,点
在椭圆
上,当直线
与圆
相切时,
.
(Ⅰ)求的方程;
(Ⅱ)直线:
与
轴交于点
,且与椭圆
和圆
都相切,切点分别为
,
,记
和
的积分别为
和
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数,常数
).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)写出及直线
的直角坐标方程,并指出
是什么曲线;
(2)设是曲线
上的一个动点,求点
到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价
(单位:元/件)之间的关系,对近
个月的月销售量
和月销售单价
数据进行了统计分析,得到一组检测数据如表所示:
月销售单价 | ||||||
月销售量 |
(1)若用线性回归模型拟合与
之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:
,
和
,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用模型拟合
与
之间的关系,可得回归方程为
,经计算该模型和(1)中正确的线性回归模型的相关指数
分别为
和
,请用
说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到
)
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥,底面
为菱形,
,H为
上的点,过
的平面分别交
于点
,且
平面
.
(1)证明: ;
(2)当为
的中点,
,
与平面
所成的角为
,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com