【题目】为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:

月工资

(单位:百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

男员工数

1

8

10

6

4

4

女员工数

4

2

5

4

1

1

(1) 试由上图估计该单位员工月平均工资;

(2)现用分层抽样的方法从月工资在的两组所调查的男员工中随机选取5人,问各应抽取多少人?

(3)若从月工资在两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.


参考答案:

【答案】(1) 估计为4300元;(2) 分别抽取3人,2人;(3) .

【解析】试题分析:(1)平均值等于各个小矩形的面积乘以组中值之和;(2)易得两层的人数比为 ,故分别为 人,;(3) 由已知可得从 人选 人有 种,古河条件的有 种,故所求概率为 .

试题解析:

(1)

即该单位员工月平均工资估计为4300元.

(2)分别抽取3人,2人

(3)由上表可知:月工资在组的有两名女工,分别记作甲和乙;月工资在组的有四名女工,分别记作A,B,C,D.现在从这6人中随机选取2人的基本事件有如下15组:

(甲,乙),(甲,A),(甲,B),(甲,C),(甲,D),

(乙,A),(乙,B),(乙,C),(乙,D),

(A,B),(A,C),(A,D),

(B,C),(B,D),

(C,D)

其中月工资差不超过1000元,即为同一组的有(甲,乙),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共7组,

∴所求概率为

关闭