【题目】已知函数
.
(1)当
时,若存在
,使得
,求实数
的取值范围;
(2)若
为正整数,方程
的两个实数根
满足
,求
的最小值.
参考答案:
【答案】(1)
或
;(2)11.
【解析】试题分析:(1)存在
,使得
等价于
在
上有两个不等实根,或
在
上有两个不等实根,结合二次函数的顶点在直线下方或上方列不等式组求解即可;(2)利用一元二次方程方程根的分别,列不等式组,根据
为正整数,先初步判断
的范围,再利用分类讨论思想求解即可.
试题解析:(1)当
时, ![]()
由题意可知,
在
上有两个不等实根,或
在
上有两个不等实根,则
或
,
解得
或![]()
即实数
的取值范围是
或
.
(2)设
,则由题意得
,即
,
所以
,由于
①当
时,
,且
无解,
②当
时,
,且
,于是
无解,
③当
时,
,且
,由
,得
,此时有解
,
综上所述,
,当
时取等号,即
的最小值为11.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的右焦点为
,右顶点为
,离心离为
,点
满足条件
.(Ⅰ)求
的值.(Ⅱ)设过点
的直线
与椭圆
相交于
、
两点,记
和
的面积分别为
、
,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形
是直角梯形,
,又
,直线
与直线
所成的角为
.
(1)求证:
;(2)求二面角
的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知中心在原点,焦点在
轴上的椭圆的一个焦点为
,
是椭圆上的一个点.(1)求椭圆的标准方程;
(2)设椭圆的上、下顶点分别为
,
(
)是椭圆上异于
的任意一点,
轴,
为垂足,
为线段
中点,直线
交直线
于点
,
为线段
的中点,如果
的面积为
,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入
的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )
A. 9 B. 8 C. 6 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,其中
,
.(Ⅰ)当
时,
的零点为______;(将结果直接填写在横线上)(Ⅱ)当
时,如果存在
,使得
,试求
的取值范围;(Ⅲ)如果对于任意
,都有
成立,试求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】【2018吉林长春高三下学期二模】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如下图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

(I)完成列
联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?(II)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

相关试题