【题目】以下四个命题错误的序号为_______
(1) 样本频率分布直方图中小矩形的高就是对应组的频率.
(2) 过点P(2,-2)且与曲线
相切的直线方程是
.
(3) 若样本
的平均数是5,方差是3,则数据
的平均数是11,方差是12.
(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.
参考答案:
【答案】(1)(2)(4)
【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;
(2)先考虑点
是切点的情形,求出切线方程,然后设切点为(x0,y0),根据切点与点(2,-2)的斜率等于切线的斜率建立等量关系,解之即可求出切点,从而求出切线方程.
对于(3),利用平均数与方差的性质分别进行解答即可得出答案.
对于(4),由对立事件的定义可知其错误.
详解:对于(1),频率分布直方图中每个小矩形的高是该组的频率与组距的比值,∴(1)错误;
对于(2), 设直线![]()
又∵直线与曲线均过点
,于是直线
与曲线
相切于切点
时,
若直线与曲线切于点
则
又
故直线
的方程为
或
.故(2)错;
对于(3),若样本
的平均数是5,方差是3,则数据
的平均数是
,方差是
.故(3)正确;
对于(4),掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”不是对立事件.故(4)错误.
故选(1)(2)(4)
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:
P(K2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
参照附表,得到的正确的结论是( )
A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”
B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察如图,则第__行的各数之和等于20172.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=3x,f(a+2)=27,函数g(x)=λ·2ax-4x的定义域为[0,2].
(1)求a的值;
(2)若函数g(x)在[0,2]上单调递减,求λ的取值范围;
(3)若函数g(x)的最大值是
,求λ的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列四个命题中正确的是( )
① 如果一条直线不在某个平面内,那么这条直线就与这个平面平行;
② 过直线外一点有无数个平面与这条直线平行;
③ 过平面外一点有无数条直线与这个平面平行;
④ 过空间一点必存在某个平面与两条异面直线都平行.
A. ①④B. ②③C. ①②③D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】2014福建)在下列向量组中,可以把向量
=(3,2)表示出来的是( )
A.
=(0,0),
=(1,2)
B.
=(﹣1,2),
=(5,﹣2)
C.
=(3,5),
=(6,10)
D.
=(2,﹣3),
=(﹣2,3) -
科目: 来源: 题型:
查看答案和解析>>【题目】用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)
相关试题