【题目】如图所示,等边△ABC中,边长为4,P、Q为AB、AC上的点,将△ABC沿着PQ折叠,使得A点与线段BC上的点D重合,且BD:CD=1:3,则AQ的长度为_____.
![]()
参考答案:
【答案】![]()
【解析】
由等边三角形性质得到△BPD∽△CDQ,得
,设AQ=x,则CQ=4-x,
则
,BP=
, PD=
,由BP+PD=4,得
+
=4.
因为,△ABC是等边三角形,
所以,∠A=∠B=∠C=∠PDQ=60,
因为,∠PDC=∠B+∠BPD,∠B=∠PDQ,
所以,∠QDC=∠BPD,
所以,△BPD∽△CDQ,
所以,
,
因为,BD∶DC=1∶3,BC=4,
所以,BD=1,DC=3,
设AQ=x,则CQ=4-x,
所以,
,
所以,BP=
, PD=
,
因为,BP+PD=4,
所以,
+
=4,
解得x=
,
所以,AQ=![]()
故答案为:![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰三角形ABC的底边BC长为6,面积是36,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在分别标有号码2,3,4…10的9个球中,随机取出2个球,记下它们的号码,则较大号能被较小号整除的概率是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在由边长均为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点 为网格线的交点),以及经过格点的直线m.
(1)画出△ABC关于直线m对称的△A1B1C1;
(2)将△DEF先向左平移5个单位长度,再向下平移4个单位长度,画出平移后得到的△D1E1F1;
(3)求∠A+∠E= ________°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求证:AF平分∠BAC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,点D在BC上,△ADE是等腰三角形,AD =AE ,∠DAE =100°,当DE⊥AC时,求∠BAD和∠EDC的度数.

相关试题