【题目】如图,二次函数y=ax2+bx+c(a>0)的图象的顶点为点D,其图象与x轴的交点A、B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=
时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值有4个.其中正确的结论是________(只填序号).
![]()
参考答案:
【答案】③④
【解析】试题分析:先根据图象与x轴的交点A,B的横坐标分别为﹣1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣
=1,即2a+b=0.故①错误;②根据图示知,当x=1时,y<0,即a+b+c<0.故②错误;③∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故③正确;④∵△ADB为等腰直角三角形.所以AD=BD=
AB,设D(1,a+b+c),又b=﹣2a,c=﹣3a,故D(1,﹣4a);列方程求解得a=1/2或a=﹣1/2(舍去),∴只有a=1/2时三角形ABD为等腰直角三角形,故④正确;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣
,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=
;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣
与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=
;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.综上所述,正确的结论是③④.故答案是:③④.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在﹣3,﹣1,0,1这四个数中,最小的数是( )
A. ﹣3B. ﹣1C. 0D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】|m﹣n+2|+|m﹣3|=0,则m+n=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于20.55与2.055这两个近似数,下列说法中,正确的是( ).
A.它们的有效数字与精确位数都不相同
B.它们的有效数字与精确位数都相同
C.它们的精确位数不相同,有效数字相同
D.它们的有效数字不相同,精确位数相同 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知等腰三角形的两边长分别是4和9,则周长是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系如图所示.那么,从关闭进水管起________分钟该容器内的水恰好放完.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠A=60°48′,则∠A的余角=_____.
相关试题