【题目】如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F两点在BC边上,DE、DF两边分别与AB边交于点G、H.固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC边以每秒1个单位的速度向点C运动;同时点P从点F出发,在折线FD﹣DE上以每秒2个单位的速度向点E运动.当点E到达点C时,△DEF和点P同时停止运动.设运动时间为t(秒).![]()
(1)当t=2时,PH=cm,DG=cm;
(2)当t为何值时,△PDG为等腰三角形?请说明理由;
(3)当t为何值时,点P与点G重合?写出计算过程.
参考答案:
【答案】
(1)
,![]()
(2)解:∵△BEG∽△BAC,
∴
=
,即
=
,
解得,EG=
t+
,
∴DG=10﹣EG=
﹣
t,
当DG=DP时,
△PDE才能成为等腰三角形,且PD=PE,
∵BF=t,PF=2t,DF=8,
∴PD=DF﹣PF=8﹣2t.
在Rt△PEF中,PE2=PF2+EF2=4t2+36=PD2.即4t2+36=(8﹣2t)2.
解得t=
.
∴t为
时,△PDE为等腰三角形
(3)解:设当△DEF和点P运动的时间是t时,点P与点G重合,
此时点P一定在DE边上,DP=DG.
由已知可得tanB=
=
=
,tanD=
,
∴∠B=∠D,
又∵∠D+∠DEB=90°,
∴∠B+∠DEB=90°,
∴∠DGH=∠BFH=90°.
∴FH=BFtanB=
t,DH=DF﹣FH=8﹣
t,DG=DHcosD=(8﹣
t)
=﹣
t+
,
∵DP+DF=2t,
∴DP=2t﹣8.
由DP=DG得,2t﹣8=﹣
t+
,解得t=
,
∵4<
<6,则此时点P在DE边上.
∴t的值为
时,点P与点G重合
【解析】解:(1)当t=2时,BF=2,PF=4,
∵∠DFE=90°,∠C=90°,
∴△BHF∽△BAC,
∴
=
,即
=
,
解得,FH=
,
∴PH=PF﹣FH=
,
∵tanB=
=
=
,tanD=
,
∴∠B=∠D,
∴∠BGE=90°,
∴△BEG∽△BAC,
∴
=
,即
=
,
解得,EG=
,
∴DG=10﹣EG=
,
所以答案是:
;
;
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABCD的顶点A、B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y=
上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+(m+2)x+
与x轴交于A(﹣2﹣n,0),B(4+n,0)两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求此抛物线的解析式;
(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;
(3)将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.当旋转后的△BO′C′有一边与BD重合时,求△BO′C′不在BD上的顶点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB//CD,点G在直线AB上, 点H在直线CD上,点K在AB、CD之间且在G、H所在直线的左侧, 若 ∠GKH=60°,点P为线段KH上一点(不和K、H重合),连接PG并延长到M, 设∠KHC=n∠KGP,要使得
为定值,则n=_____
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=45°.以AB为直径的⊙O与BC相切于B,交AC于点D,CO的延长线交⊙O于点E,过点作弦EF⊥AB,垂足为点G.

(1)求证:①EF∥CB,②AD=CD;
(2)若AB=10,求EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列证明:
已知:AB//CD,连AD交BC于点F,∠1=∠2,求证:∠B+∠CDE=180°
证明:∵∠1= ( )
又∵∠1=∠2
∴∠BFD=∠2( )
∴BC// ( )
∴∠C+ =180°( )
又∵AB//CD
∴∠B=∠C( )
∴∠B+∠CDE=180°

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中:①有限小数是有理数;②无限小数都是无理数;③任意两个无理数的和还是无理数;④开方开不尽的数是无理数;⑤一个数的算术平方根一定是正数;⑥一个数的立方根一定比这个数小;⑦任意两个有理数之间都有有理数,任意两个无理数之间都有无理数.⑧有理数和数轴上的点一一对应;⑨不带根号的数一定是有理数;⑩负数没有立方根.其中正确的有( )
A.
个B.
个C.
个D.
个
相关试题