【题目】如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()
![]()
A.50°B.60°C.70°D.80°
参考答案:
【答案】B
【解析】
如图,连接BF,
![]()
在菱形ABCD中,∵∠BAD=80°,
∴∠BAC=
∠BAD=
×80°=40°,∠BCF=∠DCF,BC=CD,
∠ABC=180°﹣∠BAD=180°﹣80°=100°.
∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°.
∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°.
∵在△BCF和△DCF中,BC=CD,∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS).
∴∠CDF=∠CBF=60°.故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是⊙O的直径,点
是
的中点,连接
并延长至点
,使
,点
是
上一点,且
,
的延长线交
的延长线于点
,
交⊙O于点
,连接
.(1)求证:
是⊙O的切线;(2)当
时,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF.已知AB = 4cm,AD = 2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了x与y的几组值,如下表:
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
…
y/cm2
4.0
3.7
3.9
3.8
3.3
2.0
…
(说明:补全表格时相关数值保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为 cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.

-
科目: 来源: 题型:
查看答案和解析>>【题目】求不等式(2x﹣1)(x+3)>0的解集.
解:根据“同号两数相乘,积为正”可得:①
或 ②
.解①得x>
;解②得x<﹣3.∴不等式的解集为x>
或x<﹣3.请你仿照上述方法解决下列问题:
(1)求不等式(2x﹣3)(x+1)<0的解集.
(2)求不等式
≥0的解集.
相关试题