【题目】“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于____
![]()
参考答案:
【答案】
【解析】由题意知小正方形的边长为2,大正方形的边长为10.设直角三角形中较小边长为x,则有(x+2)2+x2=102,解方程求得x=6,从而求出较长边的长度.运用正切函数定义求解.
解:由题意知,小正方形的边长为2,大正方形的边长为10.
设直角三角形中较小边长为x,
则有(x+2)2+x2=102,
解得,x=6.
∴较长边的边长为x+2=8.
∴tanα=短边:长边=6:8=
.
此题首先要求学生正确理解题意,然后会利用勾股定理和锐角三角函数的概念解题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点P在AB边上,AE⊥DP于E点,CF⊥DP于F点,若AE=5,CF=9,则EF=_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=
,求sin 2α的值.小娟是这样给小芸讲解的:
如图①,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°. 设∠BAC=α,则sin α=
=
.易得∠BOC=2α.设BC=x,则AB=3x,AC=2
x.作CD⊥AB于D,求出CD=________(用含x的式子表示),可求得sin 2α=
=________.【问题解决】已知,如图②,点M,N,P为⊙O上的三点,且∠P=β,sin β=
,求sin 2β的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
的顶点坐标为
,且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的表达式及A,B两点的坐标.
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值;若不存在,请说明理由;
(3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于点D,求直线CE的表达式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=4,AB=3,求AE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.

求:
(1)P到OC的距离.
(2)山坡的坡度tanα.
(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图(1),若∠AOC=
,求∠DOE的度数;(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.
相关试题