【题目】科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.
(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a= , b=
(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.
参考答案:
【答案】
(1)0;-360;1080
(2)
解:科研所到宿舍楼的距离为xkm,配套工程费为w元,
①当x<90时,w=﹣360
+1080+90x=90
+720,
当
=0时,即x=4,w有最小值,最小值为720元;
②当x≥9时,w=90x,
当x=9时,w有最小值,最小值为810元,
∴当x=4时,w有最小值,最小值为720元;
即当科研所到宿舍楼的距离4km时,配套工程费最少.
(3)
解:由题意得:
![]()
由①得:m
,
由②得:
,
∴
,
w=
,
∴60<m≤80,
∴每公里修路费用m万元的最大值为80.
【解析】(1)当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理,所以当科研所到宿舍楼的距离x=9km时,防辐射费y=0万元,根据题意得方程组,即可求出a,b的值;
(2)科研所到宿舍楼的距离为xkm,配套工程费为w元,分两种情况:①当w<90时,w=﹣360
+1080+90x=90
+720 , ②当x≥90时,w=90x,分别求出最小值,即可解答;
(3)根据配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,列出不等式组,即可解答.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.

(1)求证:四边形BCED′是平行四边形。
(2)若BE平分∠ABC,求证:AB2=AE2+BE2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.

(1)求证:∠PCA=∠B
(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长。 -
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)
(1)求点A(﹣1,3),B(
+2,
﹣2)的勾股值「A」、「B」。
(2)点M在反比例函数y=
的图象上,且「M」=4,求点M的坐标。
(3)求满足条件「N」=3的所有点N围成的图形的面积。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.

(1)如图2,若点P与点M重合,则∠PAB= , 线段PA与PB的比值为
(2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB
(3)如图4,若AC=2,BC=1,则满足条件PA=2PB的点都在一个确定的圆上,在以下小题中选做一题:
①如果你能发现这个确定的圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;
②如果你不能发现这个确定的圆的圆心和半径,那么请取出几个特殊位置的P点,如点P在直线AB上,点P与点M重合等进行探究,求这个圆的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为 .(用含n的代数式表示,其中n为正整数)

相关试题