【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
参考答案:
【答案】(1)
(2)
【解析】试题分析:(1)画树状图(或列表)求出第二次传球后所有结果,再找出第二次传球后球回到甲手里的结果,即可求得第二次传球后球回到甲手里的概率;(2)画树状图(或列表)求:当n=2时,第三次传球后所有结果有8种,第三次传球后球回到甲手里的结果有2种,所以第三次传球后球回到甲手里的概率是
;当n=3时,第三次传球后所有结果有27种,第三次传球后球回到甲手里的结果有6种,所以第三次传球后球回到甲手里的概率是
;依次类推,如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是
.
试题解析:(1)画树状图:
![]()
或:列表:
甲 | 乙 | 丙 | 丁 | |
乙 | 乙甲 | / | 乙丙 | 乙丁 |
丙 | 丙甲 | 丙乙 | / | 丙丁 |
丁 | 丁甲 | 丁乙 | 丁丙 | / |
共有9种等可能的结果,其中符合要求的结果有3种,
∴P(第2次传球后球回到甲手里)=
=
.
(2)
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:善于思考的小明在解方程组
时,采用了一种“整体代换”的解法,解法如下:解:将方程②8x+20y+2y=10,变形为 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程组的解为:
请你解决以下问题:(1)试用小明的“整体代换”的方法解方程组

(2)已知 x、y、z,满足
试求 z 的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△ABD都是⊙O的内接三角形,圆心O在边AB上,边AD分别与BC,OC交于E,F两点,点C为
的中点.(1)求证:OF∥BD;
(2)若点F为线段OC的中点,且⊙O的半径R=6 cm,求图中阴影部分(弓形)的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=-2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0).
(1)求直线y=kx+b的解析式;
(2)求两条直线与y轴围成的三角形面积;
(3)直接写出不等式(k+2)x+b≥0的解集.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润
与投资量
成正比例关系,如图(1)所示;种植花卉的利润
与投资量
成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)
(1)分别求出利润
与
关于投资量
的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场试销一种成本价为每件60元的服装,规定试销期间销售单价不低于成本单价,获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.
解:(1)根据题意,得△=(2a-1)2-4a2>0,解得a<
.∴当a<0时,方程有两个不相等的实数根.
(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-
=0 ①,解得a=
,经检验,a=
是方程①的根.∴当a=
时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.
相关试题