【题目】如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原O重合),以线段AP为一边在其右侧作等边三角形△APQ.
![]()
(1)求点B的坐标;
(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求P点的坐标.
参考答案:
【答案】(1)B(
,1);(2)∠ABQ=90°,始终不变.(3)P的坐标为(﹣
,0)
【解析】
试题分析:(1)如图,作辅助线;证明∠BOC=30°,OB=2,借助直角三角形的边角关系即可解决问题;
(2)证明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即可解决问题;
(3)根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果.
解:(1)如图1,过点B作BC⊥x轴于点C,
∵△AOB为等边三角形,且OA=2,
∴∠AOB=60°,OB=OA=2,
∴∠BOC=30°,而∠OCB=90°,
∴BC=
OB=1,OC=
,
∴点B的坐标为B(
,1);
(2)∠ABQ=90°,始终不变.理由如下:
∵△APQ、△AOB均为等边三角形,
∴AP=AQ、AO=AB、∠PAQ=∠OAB,
∴∠PAO=∠QAB,
在△APO与△AQB中,
,
∴△APO≌△AQB(SAS),
∴∠ABQ=∠AOP=90°;
(3)当点P在x轴负半轴上时,点Q在点B的下方,
∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.
又OB=OA=2,可求得BQ=
,
由(2)可知,△APO≌△AQB,
∴OP=BQ=
,
∴此时P的坐标为(﹣
,0).
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】按一定规律排列的一列数依次为: -2,4,-8,16,-32 按照此规律排列下去,
这列数中第7个数是________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:A(0,1),B(1,0),C(3,2).
(1)求△ABC的面积;
(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,点P是等边△ABC内一点,PA=4,PB=3,PC=5.线段AP绕点A逆时针旋转60°到AQ,连接PQ.(1)求PQ的长。(2)求∠APB的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺规作∠A的平分线AD.
(2)角平分线AD交BC于点D,求BD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个小球从点A(3,3)出发,经过y轴上点C反弹后经过点B(1,0),则小球从A点经过点C到B点经过的最短路线长是( )
A.4 B.5 C.6 D.7
相关试题