【题目】如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.
![]()
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
参考答案:
【答案】(1)证明见解析.(2)证明见解析.
【解析】
试题分析:(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.
(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.
试题解析:证明:(1)在平行四边形ABCD中,∠A=∠C,
又∵AE=CG,AH=CF,
∴△AEH≌△CGF.
∴EH=GF.
在平行四边形ABCD中,AB=CD,AD=BC,
∴AB-AE=CD-CG,AD-AH=BC-CF,
即BE=DG,DH=BF.
又∵在平行四边形ABCD中,∠B=∠D,
∴△BEF≌△DGH.
∴GH=EF.
∴四边形EFGH是平行四边形.
(2)在平行四边形ABCD中,AB∥CD,AB=CD.
设∠A=α,则∠D=180°-α.
∵AE=AH,∴∠AHE=∠AEH=
.
∵AD=AB=CD,AH=AE=CG,
∴AD-AH=CD-CG,即DH=DG.
∴∠DHG=∠DGH=
.
∴∠EHG=180°-∠DHG-∠AHE=90°.
又∵四边形EFGH是平行四边形,
∴四边形EFGH是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是( )
A. 57.5° B. 32.5° C. 57.5°,23.5° D. 57.5°,32.5°
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2分)矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()
A.16 B.22或16 C.26 D.22或26
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽
AB为多少?

相关试题