【题目】图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m). (参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)![]()
参考答案:
【答案】解:过C点作FG⊥AB于F,交DE于G.
∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,
∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,
∴∠CAF=68°,
在Rt△ACF中,CF=ACsin∠CAF≈0.744m,
在Rt△CDG中,CG=CDsin∠CDE≈0.336m,
∴FG=FC+CG≈1.1m.
故跑步机手柄的一端A的高度约为1.1m.
![]()
【解析】过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG中,根据三角函数可求CG,再根据FG=FC+CG即可求解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了多少名同学;
(2)条形统计图中,m,n的值;
(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,O为直线AB上一点,过点O作射线OC,
,将一直角三角板
的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
将图1中的三角板绕点O以每秒
的速度沿逆时针方向旋转一周
如图2,经过t秒后,ON落在OC边上,则
______秒
直接写结果
.
如图2,三角板继续绕点O以每秒
的速度沿逆时针方向旋转到起点OA上
同时射线OC也绕O点以每秒
的速度沿逆时针方向旋转一周,
当OC转动9秒时,求
的度数.
运动多少秒时,
?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元

(1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】规定两数a,b之间的一种运算,记作(a,b):如果

,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2,

)=_______.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:
设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.
这个几何体可以是图2中甲,乙,丙中的______;
这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;
请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:

(1)m= , n=;
(2)在扇形统计图中,D组所占圆心角的度数为度;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?
相关试题