【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为 ( )
![]()
A.(-4,5) B.(-5,4) C.(-4,6) D.(-5,6)
参考答案:
【答案】A
【解析】
试题分析:过点M作
于D,连接AM,设
的半径为R,因为四边形OABC为正方形,定点A,C在坐标轴上,以边AB为弦的
与x轴相切,若点A的坐标为(0,8),所以
,
,AM=R,又因为
是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.
过点M作
于D,连接AM,设
的半径为R,
∵以边AB为弦的
与x轴相切,
,
∴
,
∴DE是
直径的一部分;
∵四边形OABC为正方形,定点A,C在坐标轴上,点A的坐标为(0,8),
∴OA=AB=CB=OC=8,DM=8-R;
∴AD=BD=4(垂径定理);
在
中
根据勾股定理可得
,
∴![]()
∴R=5
∴M(-4,5).
故选:A
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.射线AB与射线BA表示同一条射线
B.连接两点的线段叫做这两点的距离
C.平角是一条直线
D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3 -
科目: 来源: 题型:
查看答案和解析>>【题目】绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).

(1)请在图中作出△A′B′C′;
(2)写出点A′、B′、C′的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形纸片ABCD中,AB=5,AD=4.

(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是 ;(不必说明理由)
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
分别交
轴,
轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作
,垂足为H,连接NP.设点P的运动时间为
秒.①若△NPH的面积为1,求
的值;②点Q是点B关于点A的对称点,问
是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠α=53°27′,则它的余角等于 .
相关试题