【题目】如图,在边长为1个单位长度的小正方形组成的网格中,
的顶点均在格点上,点A的坐标为
,点B的坐标为
,点C的坐标为
.
![]()
(1)以点C为旋转中心,将
旋转
后得到
,请画出
;
(2)平移
,使点A的对应点
的坐标为
,请画出
;
(3)若将
绕点P旋转可得到
,则点P的坐标为___________.
参考答案:
【答案】(1)见解析;(2)见解析;(3)(-1,0).
【解析】
(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;
(2)根据点A和A2的坐标特征确定平移的方向和距离,利用次平移规律写出点B2、C2的坐标,然后描点即可;、
(3)连接A1A2、C1C2、B1B2,它们都经过点(-1,0),从而得到旋转中心点P.
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作.![]()
(3)△A1B1C1绕点P旋转可得到△A2B2C2,则点P点坐标为(-1,0).
故答案为:(1)见解析;(2)见解析;(3)(-1,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=
AB;②AE2+BF2=EF2;③S四边形CEDF=
S△ABC;④△DEF始终为等腰直角三角形.其中正确的是( )
A.①②④B.①②③
C.①③④D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,点E,F分别是线段BC,DC上的动点.当△AEF的周长最小时,则∠EAF的度数为_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所知道的四边形中是勾股四边形的两种图形的名称_____,_____;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

-
科目: 来源: 题型:
查看答案和解析>>【题目】为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】结合数轴与绝对值的知识回答下列问题:

(1)探究:
①数轴上表示7和1的两点之间的距离是_______.
②数轴上表示﹣2和﹣9的两点之间的距离是________.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于_______.
(3)应用:
①若数轴上表示数a的点位于﹣5与4之间,则|a+5|+|a﹣4|的值=________.
②若a表示数轴上的一个有理数,且|a-3|=| a+1|,则a =______.
③若a表示数轴上的一个有理数,且|a+5|+|a﹣4|>9,则有理数a的取值范围是______.
(4)拓展:
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70.若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时点P所表示的数.

相关试题