【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.
(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.
![]()
参考答案:
【答案】(1)、y=﹣x2﹣2x+8;(2)、Q(﹣1,6);(3)、(﹣2,8)
【解析】
试题分析:(1)、直接利用待定系数求出二次函数解析式即可;(2)、首先求出直线BC的解析式,再利用轴对称求最短路线的方法得出答案;(3)、根据S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣16,得出函数最值,进而求出P点坐标即可.
试题解析:(1)、将A(2,0),B(﹣4,0)代入得:
, 解得:
,
则该抛物线的解析式为:y=﹣x2﹣2x+8;
(2)、如图1,点A关于抛物线对称轴的对称点为点B,设直线BC的解析式为: y=kx+d, 将点B(﹣4,0)、C(0,8)代入得:
, 解得:
,
故直线BC解析式为:y=2x+8, 直线BC与抛物线对称轴 x=﹣1的交点为Q,此时△QAC的周长最小.
解方程组
得:
则点Q(﹣1,6)即为所求;
(3)、如图2,过点P作PE⊥x轴于点E,
P点(x,﹣x2﹣2x+8)(﹣4<x<0) ∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣16
若S四边形BPCO有最大值,则S△BPC就最大
∴S四边形BPCO=S△BPE+S直角梯形PEOC=
BEPE+
OE(PE+OC)=
(x+4)(﹣x2﹣2x+8)+
(﹣x)(﹣x2﹣2x+8+8)
=﹣2(x+2)2+24,
当x=﹣2时,S四边形BPCO最大值=24, ∴S△BPC最大=24﹣16=8, 当x=﹣2时,﹣x2﹣2x+8=8,
∴点P的坐标为(﹣2,8).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,现有一张边长为4的正方形纸片
,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

-
科目: 来源: 题型:
查看答案和解析>>【题目】若规定向右行驶3千米记作+3千米,则向左行驶5千米记作千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列线段中,能成比例的是( )
A. 3cm、6cm、8cm、9cmB. 3cm、5cm、6cm、9cm
C. 3cm、6cm、7cm、9cmD. 3cm、6cm、9cm、18cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果a>b , 那么下列不等式一定成立的是()
A.a﹣b<0
B.﹣a>﹣b
C.
a<
b
D.2a>2b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

相关试题