【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
![]()
参考答案:
【答案】(1)、证明过程见解析;(2)、证明过程见解析
【解析】
试题分析:(1)、直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;(2)、利用(1)中所求,再结合勾股定理得出答案.
试题解析:(1)、∵将△ADF绕点A顺时针旋转90°后,得到△ABQ, ∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
∴△AQE≌△AFE(SAS), ∴∠AEQ=∠AEF, ∴EA是∠QED的平分线;
(2)、由(1)得△AQE≌△AFE, ∴QE=EF, 在Rt△QBE中,
QB2+BE2=QE2, 则EF2=BE2+DF2.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】若规定向右行驶3千米记作+3千米,则向左行驶5千米记作千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列线段中,能成比例的是( )
A. 3cm、6cm、8cm、9cmB. 3cm、5cm、6cm、9cm
C. 3cm、6cm、7cm、9cmD. 3cm、6cm、9cm、18cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.
(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果a>b , 那么下列不等式一定成立的是()
A.a﹣b<0
B.﹣a>﹣b
C.
a<
b
D.2a>2b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】﹣0.5的相反数是 , 倒数是 , 绝对值是 .
相关试题