【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为 . ![]()
参考答案:
【答案】(6+2
)a
【解析】解:∵∠C=30°,∠BAC=90°,DE⊥AC, ∴BC=2AB,CD=2DE=2a.
∵AB=AD,
∴点D是斜边BC的中点,
∴BC=2CD=4a,AB=
BC=2a,
∴AC=
=
=2
a,
∴△ABC的周长=AB+BC+AC=2a+4a+2
a=(6+2
)a.
故答案为:(6+2
)a.
先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列一段文字,然后回答下列问题:
已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算
MN=
.例如:已知P(3,1)、Q(1,-2),则这两点的距离PQ=
.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=|x1-x2|或|y1-y2|.(1)已知A(1,2)、B(-2,-3),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的同一条直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A、B两点间的距离;
(3)已知△ABC的顶点坐标分别为A(0,4)、B(-1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O
C
B
A运动,点P的运动时间为t秒.
(1)当t=2时,求直线PD的解析式。
(2)当P在BC上,OP+PD有最小值时,求点P的坐标。
(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).
-
科目: 来源: 题型:
查看答案和解析>>【题目】P是四边形ABCD内一点,PA=PB=PC=PD,又AB=CD,试确定四边形ABCD的形状,并加以证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.

(1)求点B的坐标;
(2)求直线BC的解析式;
(3)直线EF:y=2x﹣k(k≠0)交AB于E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,请说明理由.
相关试题