【题目】已知:在
中,
,
平分
交
于点
,点
在线段
上(点
不与点
、
重合),且
.
(
)如图
,若
,且
,则
__________
,
__________
.
(
)如图
,①求证:
.
②若
,且
,求
的度数.
![]()
![]()
参考答案:
【答案】(1)
,
;(2)①见解析;②![]()
【解析】试题分析:(1)由等腰三角形的性质得到∠EBC=∠ECB=27°,根据角平分线的性质得到∠DEB=∠EBC+∠ECB=54°,再由角平分线的性质得到∠ACD=∠ECB=27°,因为∠EAC=2∠EBC=54°,求得∠AEC=180°-27°-54°=99°;
(2)在CB上截取CF,使CF=CA,连接EF,构造全等三角形,由全等三角形的性质推出AE=FE,再根据FB=FE,得到AE=FB,即可得出AE+AC=FB+FC=BC;
(3)在CB上截取CF,使CF=CA,连接EF,连接AF,由∠ECB=30°,得到∠ACB=60°,于是推出△AFC是等边三角形,通过三角形全等得到∠EBC=∠FAE,由∠FAC=60°,得到∠EAC=2∠EBC=2∠FAE,于是得出∠EBC的度数.
试题解析:解:(1)∵EB=EC,∴∠EBC=∠ECB=27°,∴∠DEB=∠EBC+∠ECB=54°.
∵CD平分∠ACB,∴∠ACD=∠ECB=27°.
∵∠EAC=2∠EBC=54°,∴∠AEC=180°-27°-54°=99°.
故答案为:54°,99°.
(2)①证明:如图1,在BC上取一点M,使BM=ME,∴∠MBE=∠MEB.
∵∠EAC=2∠MBE,∠EMC=∠MBE+∠MEB=2∠MBE,∴∠EAC=∠EMC.
在△ACE与△MCE中,∵∠CAE=∠CME,∠ACE=∠MCE,CE=CE,∴△ACE≌△MCE(AAS),∴AE=ME, AC =CM,∴AE=BM,∴BC=BM+CM=AE+AC.
![]()
②如图2在BC上取一点M,使BM=ME,连接AM.
∵∠ECB=30°,∴∠ACB=60°,由①可知,△AMC是等边三角形(M点与B点重合),∴AM=AC=BE.
在△EMB与△MEA中,∵AE=BM,EM=EM,AM=BE,∴△EMB≌△MEA,∴∠EBC=∠MAE.
∵∠MAC=60°,∠EAC=2∠EBC=2∠MAE,∴∠MAE=20°,∠EAC=40°,∴∠EBC=20°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
、
是腰
、
上的高,交于点
.(
)求证:
.(
)若
,求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.
(1)每副乒乓球拍和羽毛球拍的单价各是多少元?
(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图
,
,
,以
点为顶点、
为腰在第三象限作等腰
.(
)求
点的坐标.(
)如图
,
为
轴负半轴上一个动点,当
点沿
轴负半轴向下运动时,以
为顶点,
为腰作等腰
,过
作
轴于
点,求
的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:

请根据以上不完整的统计图提供的信息,解答下列问题:
(1)小张同学共调查了 名居民的年龄,扇形统计图中a= ;
(2)补全条形统计图,并注明人数;
(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是多少人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的
,大卡车在AB段倒车的速度是它正常行驶的
,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是 分钟. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是边长为2的等边三角形,边AO在y轴上,点B1 , B2 , B3 , …都在直线y=
x上,则A2017的坐标为( )
A.2015
,2017
B.2016
,2018
C.2017
,2019
D.2017
,2017
相关试题