【题目】如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.![]()
(1)证明:DE=DF;
(2)试探究线段EF和AD是否垂直?并说明理由;
(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.
参考答案:
【答案】
(1)
证明:
∵AD是△ABC的角平分线,DE⊥A于E,DF⊥AC于F,
∴DE=DF(角平分线的性质)
(2)
解:垂直.理由如下:
∵AD是△ABC的角平分线,
∴∠EAD=∠FAD,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中
,
∴Rt△AED≌Rt△AFD(AAS),
∴AE=AF,
∴点A在线段EF的垂直平分线上,
同理点D也在线段EF的垂直平分线上,
∴AD⊥EF
(3)
解:设S△CDF=x,则S△BDE=2x,
∵S△ACD=1,且△AED≌△AFD,
∴S△AED=S△AFD=1﹣x,
∴S△ABD=S△BDE+S△AED=2x+1﹣x=x+1,
又S△ABD=
ABDE,S△ACD=
ACDF,且AB=c,AC=b,
∴
×cDE=x+1,
×bDF=1,
∴DE=
,DF=
,
又由(1)可知DE=DF,
∴
=
,解得x=
﹣1,
∵△AED≌△AFD,
∴S△AED=S△AFD=S△ACD﹣S△CDF=1﹣x,
∴S四边形AEDF=2S△AED=2(1﹣x)=2[1﹣(
﹣1)]=4﹣
,
即四边形AEDF的面积为4﹣ ![]()
【解析】(1)由角平分线的性质直接可得到DE=DF;(2)可证明△AED≌△AFD,可知AE=AF,利用线段垂直平分线的判定可证明AD是EF的垂直平分线,可证得结论;(3)设△CDF的面积为x,则可分别表示出△BED、△ADE的面积,利用三角形的面积可分别表示出DE和DF,根据DE=DF可得到关于x的方程,可求得x的值,进一步可求得四边形AEDF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四个互不相等的整数的积为9,则它们的和为( )
A. 0 B. 8 C. 4 D. 不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果|a+2|和(b﹣1)2互为相反数,那么(a+b)2015的值是( )
A. -2015 B. 2015 C. -1 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C是线段AB上一点,D是线段CB的中点,已知图中所有的线段的长度之和为23,线段AC的长度与线段CB的长度都是正整数,则线段AC长 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了“绿色出行”,减少雾霾,家住番禺在广州中心城区上班的王经理,上班出行由自驾车改为乘坐地铁出行,已知王经理家距上班地点21千米,他用地铁方式平均每小时出行的路程,比他用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的
.求王经理地铁出行方式上班的平均速度. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( )
A.(0,0) B.(0,2) C.(2,﹣4) D.(﹣4,2)
相关试题