【题目】如图,一位篮球运动员跳起投篮,球沿抛物线y=﹣
x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. ![]()
(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?
参考答案:
【答案】
(1)解:因为抛物线y=﹣
x2+3.5的顶点坐标为(0,3.5)
所以球在空中运行的最大高度为3.5米;
(2)解:当y=3.05时,3.05=﹣
x2+3.5,
解得:x=±1.5
又因为x>0
所以x=1.5
当y=2.25时,
x=±2.5
又因为x<0
所以x=﹣2.5,
由|1.5|+|﹣2.5|=1.5+2.5=4米,
故运动员距离篮框中心水平距离为4米
【解析】(1)最大高度应是抛物线顶点的纵坐标的值;(2)根据所建坐标系,水平距离是蓝框中心到Y轴的距离+球出手点到y轴的距离,即两点横坐标的绝对值的和.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2
=(1+
)2,善于思考的小明进行了以下探索:设a+b
=(m+n
)2(其中a、b、m、n均为正整数),则有a+b
=m2+2n2+2mn
,∴a=m2+2n2,b=2mn.这样小明就找到了一种把a+b
的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b
=(m+n
)2,用含m、n的式子分别表示a、b,得:a= , b= . (2)利用所探索的结论,找一组正整数a、b、m、n填空: + = ( + )2;(答案不唯一)
(3)若a+4
=(m+n
)2 ,且a、m、n均为正整数,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是( )

A. 凌晨4时气温最低为-3℃
B. 14时气温最高为8℃
C. 从0时至14时,气温随时间增长而上升
D. 从14时至24时,气温随时间增长而下降
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数的图象经过点(0,﹣3),顶点坐标为(﹣1,﹣4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校对七年级(5)班男生进行100 m短跑测试,以12.5 s为测试达标标准,超过的秒数用正数表示,不足的秒数用负数表示,某小组10名男生的成绩如下表所示:(单位:s)
+0.25
-1
-0.27
0
-0.56
-0.33
0
0.6
+0.45
-0.14
(1)求出这10名男生100 m短跑测试的达标率;
(2)这10名男生短跑共用时多少秒?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知有两人分别骑自行车和摩托车沿着相同的路线从甲地到乙地,如图反映的是这两个人在行驶过程中时间和路程的关系,请根据图象回答下列问题:

(1)甲地与乙地相距多少千米?两人分别用了几个小时才到达乙地?谁先到达乙地?先到者早到多长时间?
(2)分别描述在这个过程中自行车和摩托车的行驶状态;
(3)求摩托车行驶的平均速度.
相关试题