【题目】小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发匀速前行,且途中休息一段时间后继续以原速前行.家到公园的距离为2000m,如图是小明和爸爸所走的路程S(m)与步行时间t(min)的函数图象.![]()
(1)直接写出BC段图象所对应的函数关系式(不用写出t的取值范围).
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早18分钟到达公园,则小明在步行过程中停留的时间需减少分钟.
参考答案:
【答案】
(1)解:设直线BC所对应的函数表达式为s=kt+b,
将(30,800),(60,2000)代入得
,
解得
,
∴直线BC所对应的函数表达式为s=40t﹣400
(2)解:设小明的爸爸所走路程s与时间t的函数关系式是s=mt+n,
则
,解得
,
即小明的爸爸所走路程s与时间t的函数关系式是s=24t+200,
解方程组
,得
,
即小明出发37.5min时与爸爸第三次相遇
(3)3
【解析】(3)当s=2000时,2000=24t+200,得t=75,
∵75﹣60=15,
∴小明希望比爸爸早18min到达公园,则小明在步行过程中停留的时间需要减少3min.
所以答案是3.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.
-
科目: 来源: 题型:
查看答案和解析>>【题目】吉林省广播电视塔(简称“吉塔”)是我省目前最高的人工建筑,也是俯瞰长春市美景的最佳去处.某科技兴趣小组利用无人机搭载测量仪器测量“吉塔”的高度.已知如图将无人机置于距离“吉塔”水平距离138米的点C处,则从无人机上观测塔尖的仰角恰为30°,观测塔基座中心点的俯角恰为45°.求“吉塔”的高度.(注:
≈1.73,结果保留整数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个
81
85
90
93
95
98
100
人 数
1
2
8
11
5
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).

(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分. -
科目: 来源: 题型:
查看答案和解析>>【题目】决心试一试,请阅读下列材料:计算:

解法一:原式=
=
=
解法二:原式=

=

=

=
解法三:原式的倒数为:
=
=﹣20+3﹣5+12
=﹣10
故原式 =

上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的,在正确的解法中,你认为解法 最简捷.然后请解答下列问题,计算:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:

探究:
(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)
(4)拓展:如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 , 并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】a是不为1的有理数,我们把
称为a的差倒数.如:2的差倒数是
,现已知a1=
,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,… (1)求a2,a3,a4的值;
(2)根据(1)的计算结果,请猜想并写出a2016a2017a2018的值;
(3)计算:a33+a66+a99+…+a9999的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:
①∠ABC=∠ADC;
②AC与BD相互平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S=
ACBD.正确的是 (填写所有正确结论的序号)

相关试题