【题目】阅读下面的学习材料(研学问题),尝试解决问题:
(a)某学习小组在学习时遇到如下问题:如图①,在Rt△ABC中,∠C=90°,D为边BC上一点,DA=DB,E为AD延长线上一点,∠AEB=120°,猜想BC、EA、EB的数量关系,并证明结论.大家经探究发现:过点B作BF⊥AE交AE的延长线于F,如图②所示,构造全等三角形使问题容易求解,请写出解答过程.
(b)参考上述思考问题的方法,解答下列问题:
如图③,等腰△ABC中,AB=AC,H为AC上一点,在BC的延长线上顺次取点E、F,在CB的延长线上取点BD,使EF=DB,过点E作EG∥AC交DH的延长线于点G,连接AF,若∠HDF+∠F=∠BAC.
(1)探究∠BAF与∠CHG的数量关系;
(2)请在图中找出一条和线段AF相等的线段,并证明你的结论.
![]()
参考答案:
【答案】(a)BC=AE+
BE.证明见解析;(b)(1)∠CHG=∠BAF;(2)AF=DG,证明见解析.
【解析】
(a)如图②中,结论:BC=AE+
BE.理由如下,只要证明△BAF≌△ABC,推出BC=AF,再证明EF=
BE,可得BC=AF=AE+EF=AE+
BE;
(b)(1)由∠F+∠FDG=∠BAC,推出∠CHG=∠FDG+∠DCH=∠FDG+∠F+∠CAF=∠BAC+∠CAF=∠BAF;
(2)结论:AF=DG.如图③中,延长BD到R,使得BR=CF,连接AR,作AJ∥CF交EG的延长线于J.首先证明四边形ACEJ,四边形AJDR是平行四边形,再证明△ABF≌△JED,想办法证明∠1=∠2,即可解决问题.
解:(a)如图②中,结论:BC=AE+
BE.理由如下,
∵DA=DB,
∴∠DBA=∠DAB,
∵AF⊥BF,
∴∠F=∠C=90°,
在△BAF和△ABC中,
,
∴△BAF≌△ABC(AAS),
∴BC=AF,
∵∠AEB=120°=∠F+∠FBE,
∴∠FBE=30°,
∴EF=
BE,
∴BC=AF=AE+EF=AE+
BE,
∴BC=AE+
BE;
(b)(1)如图③中,
∵∠HDF+∠F=∠BAC,
∴∠CHG=∠FDG+∠DCH=∠FDG+∠F+∠CAF=∠BAC+∠CAF=∠BAF,
∴∠CHG=∠BAF;
(2)结论:AF=DG.理由如下,
如图③中,延长BD到R,使得BR=CF,连接AR,作AJ∥CF交EG的延长线于J,
∵AJ∥CE,AC∥JE,
∴四边形ACEJ是平行四边形,
∴AJ=CE,AC=JE,
∵AB=CA,
∴JE=AB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABR=∠ACF,
在△ABR和△ACF中,
,
∴△ABR≌△ACF(SAS),
∴AR=AF,
∵BR=CF,BD=EF,
∴DR=CE=AJ,ED=BF,
∵AJ∥RD,
∴四边形ARDJ是平行四边形,
∴JD=AR=AF,
在△ABF和△JED中,
,
∴△ABF≌△JED(SSS),
∴∠1=∠BAF,
∵∠BAF=∠CHG=∠2,
∴∠1=∠2,
∴DG=DJ,
∴AF=DG.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程组和不等式解应用题:
为了响应某市的“四个一”工程,培养学生的爱国主义情怀,某校学生和带队老师在5月下旬某天集体乘车去参观抗日战争纪念馆.已知学生的数量是带队老师的12倍多20人,学生和老师的总人数共540人.
(1)请求出去参观抗日战争纪念馆学生和老师各多少人?
(2)如果学校准备租赁
型大巴车和
型大巴车共14辆,(其中
型大巴车最多有7辆)已知
型大巴车每车最多可以载35人,日租金为2000元,其中
型大巴车每车最多可以载45人,日租金为3000元请求出最经济的租赁车辆方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.

(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:y=
x﹣3交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为( )
A.(
﹣
,﹣
)
B.(
﹣
,﹣
)
C.(
﹣
,﹣
)或(
+
,﹣
)
D.(
﹣
,﹣
)或(
+
,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.
求证:(1)AM⊥DM;
(2)M为BC的中点.

相关试题