【题目】如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
![]()
(1)求证:四边形AECF是矩形;
(2)若AB=6,求菱形的面积.
参考答案:
【答案】(1)证明见解析;(2)18
.
【解析】
试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;
(2)利用勾股定理得出AE的长,进而求出菱形的面积.
试题解析:(1)∵四边形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC,
∴∠AEC=90°,
∵E、F分别是BC、AD的中点,
∴AF=
AD,EC=
BC,
∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四边形AECF是平行四边形,
又∵∠AEC=90°,
∴四边形AECF是矩形;
(2)在Rt△ABE中,AE=
,
所以,S菱形ABCD=6×3
=18
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面的多项式在实数范围内能因式分解的是( )
A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1
-
科目: 来源: 题型:
查看答案和解析>>【题目】近似数8.090精确程度是( )
A. 精确到百分位 B. 精确到万分位 C. 精确到0.001 D. 精确到0.0001
-
科目: 来源: 题型:
查看答案和解析>>【题目】为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2.

(1)该班共有多少名学生?
(2)请在图1中将“乒乓球”部分的图形补充完整;
(3)若全年级共有1200名学生,估计全年级参加乒乓球活动的学生有多少名?
(4)求出扇形统计图中表示“足球”的扇形的圆心角度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.

(1)当BC=6时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.

(1)当t为多少时,四边形ABQP成为矩形?
(2)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个实数的算术平方根等于它的立方根,则这个数是 .
相关试题