【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.![]()
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是;
②设△BDC的面积为S1 , △AEC的面积为S2 , 则S1与S2的数量关系是.![]()
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.![]()
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使
,请直接写出相应的BF的长.![]()
参考答案:
【答案】
(1)DE∥AC,S1=S2
(2)解:如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,
,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
(3)解:如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
![]()
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=
∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=
×60°=30°,
∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,
∠CDF2=360°﹣150°﹣60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=
×60°=30°,
又∵BD=4,
∴BE=
×4÷cos30°=2÷
=
,
∴BF1=
,BF2=BF1+F1F2=
+
=
,
故BF的长为
或
.
【解析】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°﹣∠B=90°﹣30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=
AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2;
故答案为:DE∥AC;S1=S2;
(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答.
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=
AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答。
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.
(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,可得到BF1的长再根据BF2=BF1+F1F2即可得解。
-
科目: 来源: 题型:
查看答案和解析>>【题目】新冠肺炎疫情爆发以来,学生们都在家里上网课,为了了解学生在家上网课使用的设备种类,47中学校初二学年在本学年内随机抽取部分学生进行问卷调查,要求学生在“台式电脑、笔记本电脑、平板电脑、手机、网络电视”五类设备中,选取自己经常使用的一种(必选且只选一种),学年将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:

(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若47中学初二学年共有1000名学生,估计该校初二学年使用手机上课的学生有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),点B、C、E在同一直线上
.(1)求证:
;
(2)若
,
于点
,
于点
,请直接写出图(2)中所有与
互余的角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一副三角板直角顶点重合于点
,
,
,
.(1)如图(1),若
,求证:
;(2)如图(2),若
,
,则
度;(3)如图(3),在(1)的条件下,
与
相交于点
,连接
,
,若
,
,
,求
的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标中,点
为坐标原点,
的三个顶点坐标分别为
,
,
,
且
,其中
,
满足
.

(1)求点
,
的坐标;(2)点
从点
出发,以每秒1个单位长度的速度沿
轴负方向运动,设点
的运动时间为
秒.连接
、
,用含有
的式子表示
的面积为
(直接写出
的取值范围);(3)在(2)的条件下,是否存在
的值,使得
,若存在,请求出
的值,并直接写出
中点
的坐标;若不存,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
相关试题