【题目】已知如图,射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由。
![]()
参考答案:
【答案】(1)40°;(2)不变化,1:2;(3)60°,理由见解析.
【解析】试题分析:根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=
∠AOC,计算即可得解;
(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;
(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.
试题解析:(1)∵CB∥OA,
∴∠AOC=180°-∠C=180°-100°=80°,
∵OE平分∠COF,
∴∠COE=∠EOF,
∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB=
∠AOC=
×80°=40°;
(2)∵CB∥OA,
∴∠AOB=∠OBC,
∵∠FOB=∠AOB,
∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC,
∴∠OBC:∠OFC=1:2,是定值;
(3)在△COE和△AOB中,
∵∠OEC=∠OBA,∠C=∠OAB,
∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分线,
∴∠COE=
∠AOC=
×80°=20°,
∴∠OEC=180°-∠C-∠COE=180°-100°-20°=60°,
故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一列按一定顺序和规律排列的数:第一个数是
;第二个数是
;第三个数是
;(1)经过探究,我们发现:
,
,设这列数的第 5 个数为 a ,那么
,a=
,a<
,哪个正确?请你直接写出正确的结论;
(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数 (即用正整数n表示第 n 数),并且证明你的猜想满足"第n个数与第 (n+1) 个数的和等于
";(3)设
表示
,这 2016个数的和,即 M=
.求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
,直线
与直线
、
分别相交于C、D两点.(1)如图a,有一动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中,是否始终具有∠3+∠1=∠2这一关系,为什么?
(2)如图b,当动点P线段CD之外运动(不与C、D两点重合),问上述结论是否成立?若不成立,试写出新的结论并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是( )
A.点动成线B.线动成面C.面动成体D.面与面相交得到线
-
科目: 来源: 题型:
查看答案和解析>>【题目】从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率:
(1)抽取1名,恰好是甲;
(2)抽取2名,甲在其中.
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,﹣1).
(1)试在平面直角坐标系中,标出A、B、C三点;
(2)求△ABC的面积.
(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】0是( )
A.有理数B.正数C.负数D.无理数
相关试题