【题目】如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF. ![]()
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
参考答案:
【答案】
(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,
∴CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠BCD=90°﹣∠ACD=∠FCE,
在△BCD和△FCE中,
,
∴△BCD≌△FCE(SAS)
(2)解:由(1)可知△BCD≌△FCE,
∴∠BDC=∠E,∠BCD=∠FCE,
∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,
∵EF∥CD,
∴∠E=180°﹣∠DCE=90°,
∴∠BDC=90°
【解析】(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点E是AD上的一点,∠DBC=∠BED.

(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为420米,求这栋楼的高度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在0、﹣1、﹣2、 2、1、3、最大的数是 ( )
A. 0 B. 2 C. ﹣1 D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算题
(1)﹣20+(﹣14)﹣(﹣18)﹣13
(2)0﹣(﹣
)
(3)(﹣1)100×5+(﹣2)4÷4
(4)
÷
﹣
×(﹣6)
(5)(﹣10)4+[(﹣4)2﹣(3+32)×2]
(6)(
﹣
+
)×(﹣24). -
科目: 来源: 题型:
查看答案和解析>>【题目】为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表(图1)和频数分布直方图(图2).

请根据图表提供的信息,解答下列问题:
(1)表中的a= ,b= (2)请补全频数分布直方图;
(3)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应的圆心角的度数是 ;
(4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .
相关试题