【题目】如图,已知平面直角坐标系中,直线
与x轴交于点A,与y轴交于B,与直线y=x交于点C.![]()
(1)求A、B、C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
参考答案:
【答案】
(1)解:当x=0得y=2,则B(0,2),当y=0得x=-4,则A(-4,0),
由于C是两直线交点,联立直线解析式为 ![]()
解得: ![]()
则点C的坐标为(4,4) .
(2)解:过点C作CD⊥x轴与点D
∴AO=4,CD=4
∴
=
AO·CD=
×4×4=8
(3)解:点P的坐标为(4,0)或(8,0)或(
,0)
【解析】 (1)把x=0代入 y =
x + 2得出,y=2,从而得出B点的坐标,把y=0代入 y =
x + 2得出,x=-4,从而得出A点的坐标,由于C是两直线交点,联立直线解析式 y =
x + 2与y=x ,解方程组得出方程组的解,即得出了C点的坐标;
(2)过点C作CD⊥x轴与点D ,根据A,C两点的坐标得出AO=4,CD=4 ,根据 S △ A O C =
AO·CD,算出答案;
(3)以点O为圆心,OC长为半径,画弧,交x的正半轴于点P,根据题意OP=OC=4
,从而得到P点的坐标为(4
,0);以点C为圆心,OC长为半径,画弧,交x的正半轴于点P,根据题意CP=OC=4
,从而得到P点的坐标为(8,0) ,作OC的垂直平分线,角x的正半轴于点P,则,点P的坐标为(4,0) 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+b=10,a﹣b=8,则a2﹣b2= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式 x 3≤0 的正整数解的个数是( )
A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法不正确的是 ( )
A. 两个单项式的积仍是单项式;
B. 两个单项式的积的次数等于它们的次数之和;
C. 单项式乘以多项式,积的项数与多项式项数相同;
D. 多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数之和.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题正确的是( )
A.三角形的三条中线必交于三角形内一点B.三角形的三条高均在三角形内部C.三角形的外角可能等于与它不相邻的内角 D.四边形具有稳定性
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点P(﹣3,2)在 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE=_____,EN=_____;
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?

相关试题