【题目】阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an
∴MN=aman=am+n,由对数的定义得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解决以下问题:
(1)将指数43=64转化为对数式_____;
(2)证明loga
=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展运用:计算log32+log36﹣log34=_____.
参考答案:
【答案】(1)3=log464;(2)证明见解析;(3)1.
【解析】
(1)根据题意可以把指数式43=64写成对数式;
(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算
的结果,同理由所给材料的证明过程可得结论;
(3)由题意和(2)可得,将所求式子表示为:log3(2×6÷4),然后计算可得结果.
(1)由题意可得,指数式43=64写成对数式为:3=log464,
故答案为:3=log464;
(2)设logaM=m,logaN=n,则M=am,N=an,
∴
=
=am﹣n,由对数的定义得m﹣n=loga
,
又∵m﹣n=logaM﹣logaN,
∴loga
=logaM﹣logaN(a>0,a≠1,M>0,N>0);
(3)log32+log36﹣log34,
=log3(2×6÷4),
=log33,
=1,
故答案为:1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是( )

A. 点F B. 点E C. 点A D. 点C
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )

A.AD=2OB
B.CE=EO
C.∠OCE=40°
D.∠BOC=2∠BAD -
科目: 来源: 题型:
查看答案和解析>>【题目】一张宽为6cm的平行四边形纸带ABCD如图1所示,AB=10cm,小明用这张纸带将底面周长为10cm直三棱柱纸盒的侧面进行包贴(要求包贴时没有重叠部分).小明通过操作后发现此类包贴问题可将直三棱柱的侧面展开进行分析.

(1)若纸带在侧面缠绕三圈,正好将这个直三棱柱纸盒的侧面全部包贴满.则纸带AD的长度为 cm;
(2)若AD=100cm,纸带在侧面缠绕多圈,正好将这个直三棱柱纸盒的侧面全部包贴满.则这个直三棱柱纸盒的高度是 cm. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在ABCD中,对角线AC与BD相交于点O,过点O作一条直线分别交AB,CD于点E,F.

(1)求证:OE=OF;
(2)若AB=6,BC=5,OE=2,求四边形BCFE的周长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于( )

A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
相关试题