【题目】如图①,ΔABC中,AD⊥BC于点D,以A为直角顶点,分别以AB、AC为直角边,向ΔABC外作等腰RtΔABE和等腰RtΔACF,过点E、F作射线DA的垂线,垂足分别为Q、P.
(1)试探究线段EQ和FP之间的数量关系,并说明理由.
(2)如图②,若连接EF交DA的延长线于点H,由(1)中的结论你能判断EH与FH的大小关系吗?并说明理由.
(3)图②中的ΔABC与ΔAEF的面积相等吗?(直接给出结论,不需要说理)
![]()
![]()
参考答案:
【答案】(1)EQ=FP,理由见解析;(2)HE=HF,理由见解析;(3)相等,理由见解析.
【解析】
(1)根据AAS得出△EAQ≌△ABD,可得EQ=AD,同理AD=FP,由此可得结论;
(2)过点E作EQ⊥DA,过点F作FP⊥DA,垂足分别为Q、P.根据AAS证明△EQH≌△FPH即可;
(3)由(1)、(2)中的全等三角形可以推得△ABC与△AEF的面积相等.
解:(1)EQ=FP,理由如下:
如图1,∵Rt△ABE是等腰三角形,∴EA=BA.
∵∠QEA+∠QAE=90°,∠QAE+∠BAD=90°,
∴∠QEA=∠BAD.
在△EAQ与△ABD中,
,
∴△EAQ≌△ABD(AAS),
∴EQ=AD.
同理AD=FP.
∴EQ=FP.
![]()
![]()
(2)HE=HF,理由如下:
如图2,过点E作EQ⊥DA,过点F作FP⊥DA,垂足分别为Q、P.
由(1)知EQ=FP.
在△EQH与△FPH中,
∵
,
∴△EQH≌△FPH(AAS).
∴HE=HF;
(3)相等.理由如下:
由(1)知,△ABD≌△EAQ,△FPA≌△ADC,则S△ABD=S△EAQ,S△FPA=S△ADC.
由(2)知,△EQH≌△FPH,则S△EQH=S△FPH,
所以S△ABC=S△ABD+S△ADC=S△EAQ﹣S△EQH+S△FPA﹣S△FPH=S△EAH+S△FHA=S△AEF,即S△ABC=S△AEF.
故图②中的△ABC与△AEF的面积相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的长;
(2)如图2,已知△ABC,若AB边上存在一点M,若AC边上存在一点N,使MB=MN,且△AMN∽△ABC,请利用没有刻度的直尺和圆规,作出符合条件的线段MN(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫作互补等对边四边形.如图②,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形.试说明:∠ABD=∠BAC=
∠E.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF是△ABC的子三角形,如图.
(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.
求证:△DEF是△ABC的子三角形.
(2)已知:如图2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=
,求CF和AD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于函数y=﹣2x+1,下列结论正确的是( )
A. 图象必经过点(﹣2,1) B. 图象经过第一、二、三象限
C. 当x>
时,y<0 D. y随x的增大而增大 -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.
其中说法正确的是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )

A. 504m2 B.
m2 C.
m2 D. 1009m2
相关试题