【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数y=
(x<0)的图象相交于点A(﹣4,m).
(1)求反比例函数y=
的解析式;
(2)若点P在x轴上,AP=5,直接写出点P的坐标.
![]()
参考答案:
【答案】(1)y=﹣
;(2)P点的坐标是(﹣7,0)或(﹣1,0).
【解析】
(1)先求出A的坐标,再代入反比例函数解析式求出即可;
(2)根据勾股定理求出即可.
(1)∵A(﹣4,m)在一次函数y=﹣x上,
∴m=4,
即A(﹣4,4),
∵A在反比例函数y=
(x<0)的图象上,
∴k=﹣16,
∴反比例函数y=
的解析式是y=﹣
;
(2)∵Rt△ABP中,∠ABP=90°,AB=4,AP=5,
∴BP=
=3,
-4-3=-7,-4+3=-1,
∴P点的坐标是(﹣7,0)或(﹣1,0).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.
(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.
聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?
(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式
>
x﹣1.(1)当m=1时,求该不等式的解集;
(2)m取何值时,该不等式有解,并求出解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.

( 1 ) 如图 1 , 若∠ BOD=35° , 则∠ AOC= ; 若∠AOC=135°, 则∠BOD= ;
(2)如图2,若∠AOC=140°,则∠BOD= ;
(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.
(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=
∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=
,AK=
,求CN的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣
),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有一工程需在规定日期x天内完成,如果甲单独工作刚好能够按期完成:如果乙单独工作就要超过规定日期3天.
(1)甲的工作效率为 ,乙的工作效率为 .(用含x的代数式表示)
(2)若甲、乙合作2天后余下的工程由乙单独完成刚好在规定日期完成,求x的值.
相关试题