【题目】如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是( )
![]()
A. 88° B. 30° C. 32° D. 48°
参考答案:
【答案】C
【解析】
先根据角平分线的定义,得到∠COF=30°,∠AOC=2∠COE,再根据∠AOC+∠EOF=156°,可得2∠COE+∠COE﹣30°=156°,求得∠COE=62°,进而得到∠EOF的度数.
∵OF平分∠BOC,∠BOC=60°,∴∠COF=30°,∴∠EOF=∠COE﹣∠COF=∠COE﹣30°.
∵OE平分∠AOC,∴∠AOC=2∠COE.
又∵∠AOC+∠EOF=156°,∴2∠COE+∠COE﹣30°=156°,解得:∠COE=62°,∴∠EOF=62°﹣30°=32°.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在括号内注明说理依据.如图已知∠B=∠D,∠1=∠2,试猜想∠A与∠C的大小关系,并说明理由.
解:猜想∠A=∠C
∵∠1=∠2 (已知)
∠1=∠EGC
∴∠2=∠EGC
∴BF∥DE
∴∠B=∠AED
∵∠B=∠D
∴∠AED=∠D (等量代换)
∴AB∥CD
∴∠A=∠C .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O为直线AB上一点,∠AOC=52°,OD平分∠AOC,OD⊥OE,垂足为点O.
(1)求∠BOD的度数;
(2)说明OE平分∠BOC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市公租房倍受社会关注,2012年竣工的公租房有A,B,C,D 四种型号共500套,B型号公租房的入住率为40%.A,B,C,D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.

(1)请你将图1和图2的统计图补充完整;
(2)在安置中,由于D型号公租房很受欢迎,入住率很高,2012年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层.老王和老张分别从5套中各任抽1套,用树状图或列表法求出老王和老张住在同一单元同一楼层的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD的对角线AC、BD相交于点O,分别作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.

(1)求证:△BOE≌△DOF;
(2)若OA=
BD,则四边形ABCD是什么特殊四边形?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】作图题:
(1)如图,在平面内有不共线的3个点A,B,C.
(a)作直线AB,射线AC,线段BC;
(b)延长BC到点D,使CD=BC,连接AD;
(c)作线段AB的中点E,连接CE;
(d)测量线段CE和AD的长度,直接写出二者之间的数量关系_______.

(2) 有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.
注意:只需添加一个符合要求的正方形,并用阴影表示.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.

(1)求证:PB为⊙O的切线;
(2)若tan∠ABE=
,求sin∠E.
相关试题