【题目】已知:如图,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.


参考答案:

【答案】见解析

【解析】试题分析:延长BDACM点,延长CEBD的延长线于点N.在ABM中,AB+AM>BM,在CNM中,NM+MC>NC,所以AB+AM+NM+MC>BM+NC,再由AM+MC=ACBM=BN+NM可知AB+AC+NM>BN+NM+NC,故AB+AC>BN+NC,在BNC中,BN+NC=BD+DN+NE+EC,在DNE中,DN+NE>DE,由此即可得出结论.

试题解析:延长BDACM点,延长CEBD的延长线于点N.

ABM中,AB+AM>BM

CNM中,NM+MC>NC

AB+AM+NM+MC>BM+NC

AM+MC=ACBM=BN+NM

AB+AC+NM>BN+NM+NC

AB+AC>BN+NC

BNC中,BN+NC=BD+DN+NE+EC

DNE中,DN+NE>DE

由②③得:BN+NC>BD+DE+EC

由①④得:AB+AC>BN+NC>BD+DE+EC.

即:BDDEECABAC

关闭