【题目】如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E. ![]()
(1)求证:△ABD≌△EBD;
(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.
参考答案:
【答案】
(1)证明:如图,
![]()
∵AD∥BC,
∴∠1=∠DBC.
∵BC=DC,
∴∠2=∠DBC.
∴∠1=∠2.
∵BA⊥AD,BE⊥CD
∴∠BAD=∠BED=90°,
在△ABD和△EBD中
,
∴△ABD≌△EBD(AAS)
(2)证明:由(1)得,AD=ED,∠1=∠2.
∵EF∥DA,
∴∠1=∠3.
∴∠2=∠3.
∴EF=ED.
∴EF=AD.
∴四边形AFED是平行四边形.
又∵AD=ED,
∴四边形AFED是菱形.
【解析】(1)首先证明∠1=∠2.再由BA⊥AD,BE⊥CD可得∠BAD=∠BED=90°,然后再加上公共边BD=BD可得△ABD≌△EBD;(2)首先证明四边形AFED是平行四边形,再有AD=ED,可得四边形AFED是菱形.
【考点精析】根据题目的已知条件,利用菱形的判定方法的相关知识可以得到问题的答案,需要掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】据统计,2017年五一假日三天,某市共接待游客约为14300000人次,将数14300000用科学记数法表示为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.

(1)求∠BAC的度数.
(2)若AC=2,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】x,y表示两个数,规定新运算“※”及“△”如下:x※y=5x+4y,x△y=8xy,求(3※4)△6的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将线段AB向右平移3cm,得到线段CD,如果AB=5cm,则CD=______,BD=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.

(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为时,四边形AMDN是矩形; ②当AM的值为时,四边形AMDN是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.

(1)①如图1,当点P为线段EC中点时,易证:PR+PQ=
(不需证明). ②如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(2)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
相关试题