【题目】数轴上两点之间的距离等于相应两数差的绝对值,即:点A、B表示的数分别为a、b,这两点之间的距离为AB=
,如:表示数1与5的两点之间的距离可表示为
,表示数-2与3的两点之间的距离可表示为
.
(1)数轴上表示2和7的两点之间的距离是 ,数轴上表示3和-6的两点之间的距离是 ;
(2)数轴上表示x和-2的两点M和N之间的距离是 ,如果
,则x为 ;
(3)当式子:
取最小值时,x的值为 ,最小值为 .
(借助数轴,画出图形,写出过程)
参考答案:
【答案】(1)|2-7|=5,|3-(-6)|=9;(2)|x+2|;-8或4;(3)3,6.
【解析】
(1)和(2)主要是根据数轴上两点之间的距离等于相对应两数差的绝对值或直接让较大的数减去较小的数,进行计算;
(3)结合数轴和两点间的距离进行分析.
解:(1)数轴上表示3和8的两点之间的距离是:|2-7|=5;
数轴上表示-3和-9的两点之间的距离是:|3-(-6)| =9;
故答案为:5,9;
(2)数轴上表示x和-2的两点M和N之间的距离是:|x+2|,
如果|MN|=6,则|x+2|=6,
∴x+2=±6,
解得:x=4或x=-8,
故答案为:|x+2|,4或-8;
(3)|x+2|+|x-3|+|x-4|的几何意义是:数轴上表示数x的点到表示-2、3、4的三
点的距离之和,
![]()
显然只有当x=3时,
取到最小值;
∴当x=3时,
最小值为:
;
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 形如
的方程称为一元二次方程B. 方程
是一元二次方程C. 方程
的常数项为0D. 一元二次方程中,二次项系数、一次项系数及常数项都不能为0
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD中,E是BC上一点,F是CD延长线上一点,
,连接AE,AF,EF,G为EF中点,连接AG,DG.
(1)如图1:若
,
,求DG;(2)如图2:延长GD至M,使
,过M作MN∥FD交AF的延长线于N,连接NG,若
.求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.
(
,
,
,
,结果精确到0.1m)
-
科目: 来源: 题型:
查看答案和解析>>【题目】淘宝11.11购物节期间,小垣妈妈在网上某品牌服装店按标价八折拍到一件学生外套,用支付宝支付了120元.爱思考的小垣进行了下列研究:
(1)该学生外套在网上的标价是 元.
(2)妈妈告诉小垣她在网上买到的学生外套商家可以获得20%的利润.根据妈妈的说法,一件学生外套的进价是多少元?
(3)小垣搜索发现标价相同的同款学生外套在网上另一店铺打折优惠,并规定订单金额满200元,可以使用30元店铺优惠券.她告诉妈妈如果一次购买2件只需要支付225元,那么该网店同款学生外套打几折进行优惠?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校机器人兴趣小组在如图①所示的矩形场地上开展训练,机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动,已知AD=6个单位长度,机器人的速度为1个单位长度/s且其移动至拐角处调整方向所需时间忽略不计.设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.
(1)图②中函数图象与纵轴的交点的纵坐标
在图①中表示一条线段的长,请在图①中画出这条线段.(2)求图②中a的值;
(3)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.

相关试题