【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,已知∠PBA=∠C.
![]()
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为
,求BC的长.
参考答案:
【答案】(1)详见解析;(2)BC=2.
【解析】试题分析:(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;
(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.
试题解析:(1)证明:连接OB,如图所示:
∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切线;
(2)解:∵⊙O的半径为2
,
∴OB=2
,AC=4
,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴
,
即
,
∴BC=2.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程或方程组解应用题:
为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程2x-a-6=0 的解为x=4,则a=_____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个角的补角是这个角的3倍,则这个角的余角是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:tan45°=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一列数为4, 7, 10……那么第n个数是__________(用含n的式子表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).
(1)求该抛物线所对应的函数关系式;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.

相关试题