【题目】如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D
(1)求证:△BFD∽△ABD;
(2)求证:DE=DB.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)先根据内心的性质得出∠BAD=∠CAD,再由圆周角定理得出∠CAD=∠CBD,故可得出∠BAD=∠CBD,进而可得出结论;
(2)连接BE,根据点E是△ABC的内心得出∠ABE=∠CBE.由∠CBD=∠BAD可得出∠BAD+∠ABE=∠CBE+∠CBD,进而可得出结论.
试题解析:(1)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD.
∵∠CAD=∠CBD,∴∠BAD=∠CBD.
∵∠BDF=∠ADB,∴△BFD∽△ABD;
(2)证明:连接BE,∵点E是△ABC的内心,∴∠ABE=∠CBE.
又∵∠CBD=∠BAD,∴∠BAD+∠ABE=∠CBE+∠CBD.
∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,即∠DBE=∠BED,∴DE=DB.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点M(﹣2,3)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 -
科目: 来源: 题型:
查看答案和解析>>【题目】(﹣0.7)2的平方根是( )
A.﹣0.7
B.0.7
C.±0.7
D.0.49 -
科目: 来源: 题型:
查看答案和解析>>【题目】综合题如图1,在边长为a的正方形中
(1)画出两个长方形阴影,则阴影部分的面积是(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的长是 , 宽是 , 面积是(写成多项式乘法的形式);
(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达);
(4)运用你所得到的公式计算:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p) -
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.x3?x﹣4=x﹣12
B.(x3)3=x6
C.2x2+x=x
D.(3x)﹣2=
-
科目: 来源: 题型:
查看答案和解析>>【题目】在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.
(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?
(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】七年级学生小聪和小明完成了数学实验《钟面上的数学》之后,自制了一个模拟钟面,如图所示,O 为模拟钟面圆心,M、O、N 在一条直线上,指针 OA、OB 分别从 OM、ON 出发绕点 O 转动,OA 运动速度为每秒 15°,OB 运动速度为每秒 5°,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,请你试着解决他们提出的下列问题:

(1)若OA顺时针转动,OB逆时针转动,t=秒时,OA与OB第一次重合;
(2)若它们同时顺时针转动
①当 t=3 秒时,∠AOB=°;
相关试题