【题目】如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为( ).
![]()
A. 108° B. 135° C. 144° D. 160°
参考答案:
【答案】A
【解析】
连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.
解:如图,连接OB、OC, ![]()
∵∠BAC=54°,AO为∠BAC的平分线,
∴∠BAO=
∠BAC=
×54°=27°,
又∵AB=AC,
∴∠ABC=
(180°-∠BAC)=
(180°-54°)=63°,
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC-∠ABO=63°-27°=36°,
∵AO为∠BAC的平分线,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴点O在BC的垂直平分线上,
又∵DO是AB的垂直平分线,
∴点O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知A(
,y1),B(2,y2)为反比例函数y=
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.(
,0)
B.(1,0)
C.(
,0)
D.(
,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( ).①作出AD的依据是SAS;②∠ADC=60°
③点D在AB的中垂线上;④S△DAC:S△ABD=1:2.

A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.
(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为______.
(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
(1)写出数轴上点A表示的数;
(2)将长方形OABC沿数轴向右水平移动,移动后的长方形记为
,若移动后的长方形
与原长方形OABC重叠部分的面积恰好等于原长方形OABC面积的
时,写出数轴上点
表示的数;
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(1)
·8
÷(-15x2y2) (2)
(3)
(4)(3ab+4)2-(3ab-4)2 -
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程:
(1)5x2+2x﹣1=0
(2)(x﹣2)2=2x﹣4.
相关试题