【题目】“科学”号是我国目前最先进的海洋科学综合考察船,它在南海利用探测仪在海面下方探测到点C处有古代沉船.如图,海面上两探测点A,B相距1400米,探测线与海面的夹角分别是30°和60°.试确定古代沉船所在点C的深度.(结果精确到1米,参考数据:
≈1.414,
≈1.732)![]()
参考答案:
【答案】解:如图所示:过点C作CD⊥AB于点D, ![]()
由题意可得:∠DAC=30°,∠DBC=60°,AB=1400km,
则∠BCA=30°,
故AB=BC=1400km,
sin60°=
=
,
解得:DC=700
≈1212(km).
答:古代沉船所在点C的深度约为1212km.
【解析】根据题意添加辅助线,过点C作CD⊥AB于点D,先证明AB=BC,然后在Rt△DBC中,利用∠DBC的正弦求出DC的长。
【考点精析】通过灵活运用锐角三角函数的定义和特殊角的三角函数值,掌握锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数;分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(4,3)是反比例函数y=
在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=
的图象于点P.(1)求反比例函数y=
的表达式;(2)求点B的坐标;
(3)求△OAP的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转α°,分别交直线BC、AD于点E、F.

(1)当α= °,四边形ABEF是平行四边形;
(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形.
①α= °,构造的四边形是菱形;
②若构造的四边形是矩形,求出该矩形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一枚棋子放在⊙O上的点A处,通过摸球来确定该棋子的走法.
其规则如下:在一只不透明的口袋中,装有3个标号分别为1,2,3的相同小球.充分搅匀后从中随机摸出1个,记下标号后放回袋中并搅匀,再从中随机摸出1个,若摸出的两个小球标号之积是m,就沿着圆周按逆时针方向走m步(例如:m=1,则A﹣B;若m=6,则A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或树状图,分别求出棋子走到A、B、C、D点的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算下列各题:
(1)(﹣1)2018﹣2(π﹣1)0+(﹣
)﹣2(2)(2a﹣4)(
a+5)﹣2(a﹣10)(3)(2x+3y)(﹣2x+3y)﹣(x﹣3y)2
(4)(4x3y﹣6x2y2+12xy3)÷2xy
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.
(1)求证:DM=BM;
(2)求MH的长;
(3)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(4)在(3)的条件下,当点P在边AB上运动时是否存在这样的 t值,使∠MPB与∠BCD互为余角,若存在,则求出t值,若不存,在请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题6分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AO上,这时梯足B到墙底端O的距离为0.7米, 如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?

相关试题