【题目】如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.

(1)当x为何值时,直线AD1过点C?
(2)当x为何值时,直线AD1过BC的中点E?
(3)求出y与x的函数表达式.


参考答案:

【答案】
(1)

解:

如图1,∵由题意得:△ADP≌△AD1P,

∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,

∵直线AD1过C,

∴PD1⊥AC,

在Rt△ABC中,AC= = ,CD1= ﹣2,

在Rt△PCD1中,PC2=PD12+CD12

即(3﹣x)2=x2+( ﹣2)2

解得:x=

∴当x= 时,直线AD1过点C


(2)

解:如图2,

连接PE,

∵E为BC的中点,

∴BE=CE=1,

在Rt△ABE中,AE= =

∵AD1=AD=2,PD=PD1=x,

∴D1E= ﹣2,PC=3﹣x,

在Rt△PD1E和Rt△PCE中,

x2+( ﹣2)2=(3﹣x)2+12

解得:x=

∴当x= 时,直线AD1过BC的中点E;


(3)

解:如图3,

当0<x≤2时,y=x,

如图4,

当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,

∵AB∥CD,

∴∠1=∠2,

∵∠1=∠3(根据折叠),

∴∠2=∠3,

∴AF=PF,

作PG⊥AB于G,

设PF=AF=a,

由题意得:AG=DP=x,FG=x﹣a,

在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2

解得:a=

所以y= =

综合上述,当0<x≤2时,y=x;当2<x≤3时,y=


【解析】(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2 , 求出a即可.
【考点精析】掌握全等三角形的性质和勾股定理的概念是解答本题的根本,需要知道全等三角形的对应边相等; 全等三角形的对应角相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

关闭