【题目】在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是( )
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
参考答案:
【答案】C
【解析】
根据平行四边形的判定方法得出A、B、D正确,C不正确;即可得出结论.
解:A.∵ OA=OC,OB=OD
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),
∴A正确,故本选项不符合要求;
B. ∵AB∥CD
∴∠DAO=∠BCO,
在△DAO与△BCO中,
∴△DAO≌△BCO(ASA),
∴OD=OB,
又OA=OC,
∴四边形ABCD是平行四边形,∴B正确,故本选项不符合要求;
![]()
C. 由 AB=DC, OA=OC,
∴无法得出四边形ABCD是平行四边形.故不能能判定这个四边形是平行四边形,符合题意;∵AB∥DC,
D.∵∠ADB=∠CBD,∠BAD=∠BCD
∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形),∴D正确,故本选项不符合要求;故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.

(1)求过A、B、C三点的抛物线的解析式;
(2)若直线CD∥AB交抛物线于D点,求D点的坐标;
(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:
(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?
(2)请帮助物流公司设计租车方案
(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列不等式组
(1)解不等式组
,并把解集在数轴上表示出来.(2)求不等式组2≤3x﹣7<8的所有整数解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将□ABCD如图放置,若点B的坐标是(-3,4),点C的坐标是(-1,0),点D的坐标是(5,3),则点A的坐标是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.
(1)画出△DEF;
(2)连接AD、BE,则线段AD与BE的关系是 ;
(3)求△DEF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,无论k取何实数,直线y=(k-1)x+4-5k总经过定点P,则点P与动点Q(5m-1,5m+1)的距离的最小值为______.
相关试题