【题目】如图,在菱形ABCD中,AB=5cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB.CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为( )
![]()
A.
B.
C.
D.![]()
参考答案:
【答案】D
【解析】
由题意知道AE=t,CF=2t,连接BD,证明△DEB≌△DFC,得到EB=FC=2t,进而AB=AE+EB=3t=5,进而求出t的值.
解:连接DB,如下图所示,
![]()
∵四边形ABCD为菱形,且∠ADC=120°,
∴∠CDB=60°
∴△CDB为等边三角形,∴DB=DC
又∵△DEF为等边三角形,∴∠EDF=60°,DE=DF
∴∠CDB=∠EDF
∴∠CDB-∠BDF=∠EDF-∠BDF
∴∠CDF=∠BDE
在△EDB和△FDC中:
,∴△EDB≌△FDC(SAS)
∴FC=BE=2t
∴AB=AE+EB=t+2t=3t=5
∴t=
.
故答案为:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止.设点P移动时间为t秒

(1) 用含t的代数式表示P点对应的数;
(2) 当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点;
① 用含t的代数式表示Q点在由A到C过程中对应的数;
② 当t=___________时,动点P、Q到达同一位置(即相遇);
③ 当PQ=3时,求t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )

A. ∠1=∠3 B. 如果∠2=30°,则有AC∥DE
C. 如果∠2=30°,则有BC∥AD D. 如果∠2=30°,必有∠4=∠C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,把△ABC绕AC边的中点M旋转后得△DEF,若直角顶点F恰好落在AB边上,且DE边交AB边于点G,若AC=4,BC=3,则AG的长为( )

A.
B.
C.
D.1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AB=
,E是对角线AC上的动点,以DE为边作正方形DEFG,H是CD的中点,连接GH,则GH的最小值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校有3600名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

(1)参与本次问卷调查的学生共有 人,其中选择D类的人数有 人;
(2)在扇形统计图中,求E类对应的扇形圆心角
的度数,并补全C对应的条形统计图;(3)若将A、B、C.D.E这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.

∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代换)
∴DE∥BC(___)
∴∠C=∠AED(___).
相关试题