【题目】如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=2.在BC上找点G,使EG=AF,则BG的长是___________
![]()
参考答案:
【答案】1或5
【解析】
过E作EH⊥BC于H,取
,根据平行线分线段成比例定理得:BH=CH=3,证明Rt△ADF≌Rt△EHG,得GH=DF=2,可得BG的长,再运用等腰三角形的性质可得BG及
的长.
解:如图:过E作EH⊥BC于H,取
,则AB∥EH∥CD,
![]()
∵E是AD的中点,
∴BH=CH=3,
∵四边形ABCD是正方形,
∴AD=CD=EH,∠D=∠EHG=90°,
∵EG=AF,
∴Rt△ADF≌Rt△EHG(HL),
∴GH=DF=2,
∴BG=BHGH=32=1;
∵
∴
∴
故答案为:1或5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=
(m≠0)的图象相交于C、D两点,和x轴交于A点,y轴交于B点.已知点C的坐标为(3,6),CD=2BC.(1)求点D的坐标及一次函数的解析式;
(2)求△COD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为( )(精确到1米,
=1.732).
A. 585米 B. 1014米 C. 805米 D. 820米
-
科目: 来源: 题型:
查看答案和解析>>【题目】设θ为直角三角形的一个锐角,给出θ角三角函数的两条基本性质:①tanθ=
;②cos2θ+sin2θ=1,利用这些性质解答本题.已知cosθ+sinθ=
,求值:(1)tanθ+
; (2)|cosθ-sinθ|. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,BD=2,tanB=
.(1)求AD和AB的长;
(2)求sin∠BAD的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:
=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
相关试题