【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.
![]()
(1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数
是多少?
(3)从下到上前多少个台阶上数的和为30.
参考答案:
【答案】(1)3;(2)-5;(3)40或55
【解析】
(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;
(3)应用:根据“台阶上的数字是每4个一循环”求解可得;
发现:由循环规律即可知“1”所在的台阶数为4k-1.
(1)由题意得前4个台阶上数的和是-5-2+1+9=3;
(2)由题意得-2+1+9+x=3,
解得:x=-5,
则第5个台阶上的数x是-5;
(3)应用:由题意知台阶上的数字是每4个一循环,
∵31÷4=7…3,
∴7×3+1-2-5=15,
即从下到上前31个台阶上数的和为15;
发现:数“1”所在的台阶数为4k-1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.

(1)∠BEF=(用含α的代数式表示);
(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求
的值(用含m,n的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )

A. 12 B. 14 C. 16 D. 18
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过A(﹣
,0)、B(3
,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E. 
(1)求该抛物线的解析式;
(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;
(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果). -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如上图,正方形网格中的每个小正方形边长都是1,任意连接这些小正方形的顶点,可得到一些线段;请在图中画出AB=
,CD=
,EF=
这样的线段;
(2)如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90°后的图形△ABC;并计算对应点B和B之间的距离?

(3)如图是由5个边长为1的小正方形拼成的.

①将该图形分成三块(在图中画出),使由这三块可拼成一个正方形;
②求出所拼成的正方形的面积S.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.

(1)MN的长为 ;
(2)如果点P到点M、点N的距离相等,那么x的值是 ;
(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.
(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为( )

A.80°
B.90°
C.100°
D.110°
相关试题