【题目】如图:在数轴上A点表示数
,B点示数
,C点表示数
,
是最小的正整数,且
、
满足
.
![]()
(1)
=__________,
=__________,
=__________;
(2)若将数轴折叠,使得A点与C点重合,则点B与数__________表示的点重合;
(3)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动,假设
秒钟过后,A、B、C三点中恰有一点为另外两点的中点,求
的值;
(4)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小聪同学发现:当点C在B点右侧时,
BC+3AB的值是个定值,求此时
的值.
参考答案:
【答案】(1)
=-3,
=1,
=9;(2)5;(3)1, 16, 4;(4)
=1.
【解析】
试题(1)根据非负数的意义求出a、c的值,根据最小的正整数求出b;
(2)根据对称性可求解;
(3)分别以A、B、C为中点,分别求解即可;
(4)分别求出此时的BC、AB的长,然后由
BC+3AB可代入相应的速度值求解是定值的m.
试题解析:(1)因为b是最小的正整数,可得b=1,
根据
,求得
=-3,
=9;
(2)根据对称性可求解:(-3+9)×2=3,
3-1=2,
3+2=5
答案为:5.
(3)B为中点时,
,
解得
=1,
A为中点时,
解得
=16,
C为中点时,
解得
=4;
(4)由题意可知,AB=4+t,
BC=8-3t
所以m·BC+3AB
=m·(8-3t)+3(4+t)
=8m+12-(3m-3)t
由定值可知3m-3=0
解得
=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学复习课上,张老师出示了下框中的问题:

已知:在Rt△ACB中,∠C=90°,点D是斜边AB上的中点,连接CD.
求证:CD=
AB.

问题思考
(1)经过独立思考,同学们想出了多种正确的证明思想,其中有位同学的思路如下:如图1,过点B作BE∥AC交CD的延长线于点E。请你根据这位同学的思路提示证明上述框中的问题.
方法迁移
(2)如图2,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC上一动点,连接DE,线段DF始终与DE垂直且交BC于点F。试猜想线段AE,EF,BF之间的数量关系,并加以证明.
拓展延伸
(3)如图3,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC延长线上一动点,连接DE,线段DF始终与DE垂直且交CB延长线于点F。试问第(2)小题中线段AE,EF,BF之间的数量关系会发生改变吗?若会,请写出关系式;若不会,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
与x轴交于点A,与y轴交于点C.抛物线
经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在所给的平面直角坐标系中描出下列各点:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度;②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度;③点C在y轴上,位于原点下方,距离原点2个单位长度;④点D在x轴上,位于原点右侧,距离原点4个单位长度. 填空:点A的坐标为________;点B的坐标为________;点B位于第________象限内;点C的坐标为________;点D的坐标为________;线段CD的长度为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).

(1)写出点A、B的坐标:
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).
(3)△ABC的面积为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:我们知道a的几何意义是在数轴上数a对应的点与原点的距离.数轴上数a与数0对应点之间的距离,
这 个结论可以推广为: |a- b|均表示在数轴上数a与b对应点之间的距离,例:已知|a-1|=2, 求a的值.解:在数轴上与1的距离为2点的对应数为3和-1,即a的值为3和-1.
仿照阅读材料的解法,解决下列问题
(1)已知
,求a的值.(2)若数轴上表示a的点在-4与2之间,则|a+4|+|a-2|的值为___
(3)当a满足什么条件时,|a-1|+ |a+2|有最小值,最小值是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,厂方开展促销活动期间,向客户提供两种优惠方法:①买一套西装送一条领带;②西装和领带均按定价的90%付款。某商店到该服装厂购买西装20件,领带若干条.
(1)领带买多少条时,两种优惠方法相同?
(2)购买50条领带时,应采用哪一种方案更省钱?
相关试题