【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
![]()
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共 吨;
(3)调查发现,在可回收物中塑料类垃圾占
,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
参考答案:
【答案】(1)图形见解析(2)3(3)378
【解析】
试题分析:(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;
(2)求得C组所占的百分比,即可求得C组的垃圾总量;
(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可.
试题解析:(1)观察统计图知:D类垃圾有5吨,占10%,
∴垃圾总量为5÷10%=50吨,
故B类垃圾共有50×30%=15吨,
故统计表为:
![]()
(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,
∴有害垃圾为:50×6%=3吨;
(3)5000×54%×
×0.7=378(吨),
答:每月回收的塑料类垃圾可以获得378吨二级原料.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④
=1.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已如直线
∥
,且
与
、
分别交于A、B两点,
与
、
分别交于C、D两点,记∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,点P在线段AB上.(1)若∠1=25°,∠2=33°,则∠3=__________;
(2)猜想∠1,∠2,∠3之间的相等关系,并说明理由;
(3)如图2,点在点B的南偏东23°方向,在点C的西南方向,利用(2)的结论,可知∠BAC=__________;
(4)点P在直线
上且在A、B两点外侧运动时,其它条件不变,请直接写出∠1,∠2,∠3之间的相等关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,双曲线y=
经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为6,则k的值是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).

(1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为 ;
(2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,双曲线
(x<0)经过平行四边形ABCO的对角线交点D,已知边OC在y轴上,且AC⊥AB于点C,则平行四边形ABCO的面积是( )
A.
B.
C. 3 D. 6【答案】A
【解析】试题分析:∵点D为平行四边形ABCO的对角线交点,双曲线y=
(x<0)经过点D,AC⊥y轴,∴S平行四边形ABCO=4S△COD=4×
×|
|=
.故选A.
点睛:本题考查了反比例函数系数k的几何意义以及平行四边形的性质,根据平行四边形的性质结合反比例函数系数k的几何意义,找出S平行四边形ABCO=4S△COD=2|k|是解题的关键.
【题型】单选题
【结束】
9【题目】如果分式
在实数范围内有意义,则
的取值范围是_____________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD不添加任何字母和数字,请你再添加一个条件∠1=∠2成立(要求给出三个答案),并选择其中一种情况加以证明.

条件1:________________________________;
条件2:________________________________;
条件3:________________________________.
相关试题